a2 United States Patent

Palmert

US009075766B2

US 9,075,766 B2
Jul. 7, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(60)

(1)

(52)

(58)

COMPUTER IMPLEMENTED METHODS
AND APPARATUS FOR DETERMINING
WHETHER TO CONTINUE RELATIONSHIPS
IN AN ONLINE SOCIAL NETWORK

Applicant: salesforce.com, inc., San Francisco, CA

(US)

Inventor: Joel Palmert, Stockholm (SE)

Assignee: salesforce.com, inc., San Francisco, CA
(US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 205 days.

Appl. No.: 13/933,375

Filed: Jul. 2, 2013
Prior Publication Data
US 2014/0019544 A1 Jan. 16, 2014

Related U.S. Application Data

Provisional application No. 61/670,704, filed on Jul.
12, 2012.

Int. CI.

GOGF 15/16 (2006.01)

GOGF 15/173 (2006.01)

HO4L 12/58 (2006.01)

G06Q 50/00 (2012.01)

USS. CL

CPC ... GOGF 15/17306 (2013.01); HO4L 12/588

(2013.01); GO6Q 50/01 (2013.01)
Field of Classification Search
CPC HO4L 12/588; HO4L 51/32; HO4L 61/1594
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,577,188 A 11/1996 Zhu
5,608,872 A 3/1997 Schwartz et al.
5,649,104 A 7/1997 Carleton et al.
5,715,450 A 2/1998 Ambrose et al.
5,761,419 A 6/1998 Schwartz et al.
5,819,038 A 10/1998 Carleton et al.
5,821,937 A 10/1998 Tonelli et al.
5,831,610 A 11/1998 Tonelli et al.
5,873,096 A 2/1999 Limet al.
5,918,159 A 6/1999 Fomukong et al.
5,963,953 A 10/1999 Cram et al.
5,983,227 A 11/1999 Nazem et al.
(Continued)
OTHER PUBLICATIONS

“Google Plus Users”, Google+Ripples, Oct. 31, 2011 [retrieved on
Feb. 21, 2012 from Internet at http://www.googleplusers.com/
google-ripples.html], 3 pages.

Primary Examiner — Brendan Higa
(74) Attorney, Agent, or Firm — Weaver Austin Villeneuve
& Sampson LLP

(57) ABSTRACT

Disclosed are systems, apparatus, methods and computer-
readable storage media for determining whether to continue
relationships in an online social network. For example, a
server can maintain data entries in one or more database
tables. A given data entry can include: an identification of an
entity, an identification of a user having a social networking
relationship with the entity, and an affinity score indicating an
amount of interaction by the user with the entity. For each
entry, a ratio of the affinity score to a measure of an amount of
content associated with the entity and published in a feed
accessible by the user can be determined. Depending on the
implementation, such ratios can be compared with a threshold
and/or ranked to identify candidates for discontinuing social
networking relationships.

25 Claims, 24 Drawing Sheets

1500

a retationship in an online social network

Gumputer implemented method for determining whether to cumin@

1504
-~

Maintain, al 2 server, data entries in one or more database tables.
each data eniry identifying: an entity, a usar having a social
networking refationship with the entity, and an afinity score
indicating an amount of interaction by the user with the entity

1508

For a data entry, divide the afinity score by a current value of an
inflation factor to determine 2 normalized affiniy score

!

1512

Determine a ratio of the narmalized affinity score to 2 measure of
an amount of content associated with the entity and published in a
feed accessible by the user

!

1516

i Compare ltre ralio with a treshotd |

Identify the social netwarking refationship between the user and
the entity of the data entry as a candidate for being discontinued

1528

Generate a first

including a to
Giscontinue the social networking refationship between the user
and the entity

(Goto 1532)

US 9,075,766 B2

Page 2

(56)

6,092,083
6,169,534
6,178,425
6,189,011
6,216,133
6,216,135
6,233,617
6,236,978
6,266,669
6,288,717
6,295,530
6,324,568
6,324,693
6,336,137
D454,139
6,367,077
6,393,605
6,405,220
6,411,949
6,434,550
6,446,089
6,535,909
6,549,908
6,553,563
6,560,461
6,574,635
6,577,726
6,601,087
6,604,117
6,604,128
6,609,150
6,621,834
6,654,032
6,665,648
6,665,655
6,684,438
6,711,565
6,724,399
6,728,702
6,728,960
6,732,095
6,732,100
6,732,111
6,754,681
6,763,351
6,763,501
6,768,904
6,782,383
6,804,330
6,826,565
6,826,582
6,826,745
6,829,655
6,842,748
6,850,895
6,850,949
6,907,566
7,062,502
7,100,111
7,269,590
7,340,411
7,373,599
7,401,094
7,406,501
7,454,509
7,599,935

References Cited
U.S. PATENT DOCUMENTS

A 7/2000 Brodersen et al.
Bl 1/2001 Raffel et al.

B1 1/2001 Brodersen et al.
Bl 2/2001 Limetal.

Bl 4/2001 Masthoff

B1 4/2001 Brodersen et al.
B1 5/2001 Rothwein et al.
Bl 5/2001 Tuzhilin

B1 7/2001 Brodersen et al.
Bl 9/2001 Dunkle

B1 9/2001 Ritchie et al.
Bl 11/2001 Diec et al.

Bl 11/2001 Brodersen et al.
Bl 1/2002 Leeet al.

S 3/2002 Feldcamp et al.
B1 4/2002 Brodersen et al.
B1 5/2002 Loomans

B1 6/2002 Brodersen et al.
B1 6/2002 Schaffer

B1 8/2002 Warner et al.
B1 9/2002 Brodersen et al.
Bl 3/2003 Rust

B1 4/2003 Loomans

B2 4/2003 Ambrose et al.
Bl 5/2003 Fomukong et al.
B2 6/2003 Stauber et al.
Bl 6/2003 Huang et al.

Bl 7/2003 Zhu et al.

B2 8/2003 Lim et al.

B2 8/2003 Diec et al.

B2 8/2003 Leeetal.

Bl 9/2003 Scherpbier et al.
Bl 11/2003 Zhuetal.

B2 12/2003 Brodersen et al.
Bl 12/2003 Warner et al.
B2 2/2004 Brodersen et al.

B1 3/2004 Subramaniam et al.

B1 4/2004 Katchour et al.

B1 4/2004 Subramaniam et al.

B1 4/2004 Loomans et al.
Bl 5/2004 Warshavsky et al.
B1 5/2004 Brodersen et al.
B2 5/2004 Brodersen et al.
B2 6/2004 Brodersen et al.

B1 7/2004 Subramaniam et al.

Bl 7/2004 Zhu et al.
B2 7/2004 Kim

B2 8/2004 Subramaniam et al.

Bl 10/2004 Jones et al.

B2 11/2004 Ritchie et al.
Bl 11/2004 Chatterjee et al.
B2 11/2004 Coker

Bl 12/2004 Huang et al.

B1 1/2005 Warner et al.
B2 2/2005 Brodersen et al.
B2 2/2005 Warner et al.
B1 6/2005 McElfresh et al.
B1 6/2006 Kesler

B2 8/2006 McElfresh et al.
B2 9/2007 Hull et al.

B2 3/2008 Cook

B2 5/2008 McElfresh et al.
B1 7/2008 Kesler

B2 7/2008 Szeto et al.

B2 11/2008 Boulter et al.
B2 10/2009 La Rotonda et al.

7,603,331 B2
7,620,655 B2
7,644,122 B2
7,668,861 B2
7,698,160 B2
7,730,478 B2
7,747,648 Bl
7,779,039 B2
7,827,208 B2
7,853,881 Bl
7,945,653 B2
8,005,896 B2
8,073,850 Bl
8,082,301 B2
8,095,413 Bl
8,095,531 B2
8,095,594 B2
8,103,611 B2
8,150,913 B2
8,209,333 B2
8,275,836 B2
2001/0044791 Al
2002/0072951 Al
2002/0082892 Al
2002/0129352 Al
2002/0140731 Al
2002/0143997 Al
2002/0162090 Al
2002/0165742 Al
2003/0004971 Al
2003/0018705 Al
2003/0018830 Al
2003/0066031 Al
2003/0066032 Al
2003/0069936 Al
2003/0070000 Al
2003/0070004 Al
2003/0070005 Al
2003/0074418 Al
2003/0120675 Al
2003/0151633 Al
2003/0159136 Al
2003/0187921 Al
2003/0189600 Al
2003/0204427 Al
2003/0206192 Al
2003/0225730 Al
2004/0001092 Al
2004/0010489 Al
2004/0015981 Al
2004/0027388 Al
2004/0128001 Al
2004/0186860 Al
2004/0193510 Al
2004/0199489 Al
2004/0199536 Al
2004/0199543 Al
2004/0249854 Al
2004/0260534 Al
2004/0260659 Al
2004/0268299 Al
2005/0050555 Al
2005/0091098 Al
2009/0063415 Al
2011/0296004 Al*
2012/0011204 Al*
2012/0290407 Al
2013/0212173 Al*

* cited by examiner

10/2009
11/2009
1/2010
2/2010
4/2010
6/2010
6/2010
8/2010
11/2010
12/2010
5/2011
8/2011
12/2011
12/2011
1/2012
1/2012
1/2012
1/2012
4/2012
6/2012
9/2012
11/2001
6/2002
6/2002
9/2002
10/2002
10/2002
10/2002
11/2002
1/2003
1/2003
1/2003
4/2003
4/2003
4/2003
4/2003
4/2003
4/2003
4/2003
6/2003
8/2003
8/2003
10/2003
10/2003
10/2003
11/2003
12/2003
1/2004
1/2004
1/2004
2/2004
7/2004
9/2004
9/2004
10/2004
10/2004
10/2004
12/2004
12/2004
12/2004
12/2004
3/2005
4/2005
3/2009
12/2011
1/2012
11/2012
82013

Tuzhilin et al.
Larsson et al.
Weyer et al.
Steven

Beaven et al.
Weissman

Kraft et al.
Weissman et al.
Bosworth et al.
Assal et al.
Zukerberg et al.
Cheah

Hubbard et al.
Ahlgren et al.
Beaven
Weissman et al.
Beaven et al.
Tuzhilin et al.
Cheah

Hubbard et al.
Beaven et al.
Richter et al.
Leeetal.

Raffel et al.
Brodersen et al.
Subramaniam et al.
Huang et al.
Parnell et al.
Robins

Gong

Chen et al.

Chen et al.

Laane et al.
Ramachandran et al.
Warner et al.
Coker et al.
Mukundan et al.
Mukundan et al.
Coker et al.
Stauber et al.
George et al.
Huang et al.

Diec et al.

Gune et al.

Gune et al.

Chen et al.
Warner et al.
Rothwein et al.
Rio et al.

Coker et al.

Berg et al.

Levin et al.
Leeetal.

Catahan et al.
Barnes-Leon et al.
Barnes Leon et al.
Braud et al.
Barnes-Leon et al.
Pak et al.

Chan et al.

Lei et al.

Exley et al.
Brodersen et al.
Chatfield et al.
Swaharcccccoevvvennnn 709/224
Morin et al.c..o....... 709/205
Hubbard et al.
Carthcart etal. 709/204

U.S. Patent Jul. 7, 2015 Sheet 1 of 24 US 9,075,766 B2

/“sz /‘424 f26

N] N]
Tenant System Program
Data Data Code
Storage Storage
J J r1 7 r 28

f1 8 | Processor

System Process Space
Application 20
Platform \

Network System 16

Interface

Environment
10

User User
System | e e e System
12 12

FIGURE 1A

U.S. Patent Jul. 7, 2015 Sheet 2 of 24 US 9,075,766 B2
/ P 22 —
1 23
04 | Tenant .Space o 112
<A : g
E 25 Tenant Data ~ 114
— Application MetaData |~ |~ 116
Tenant DB
Application
Setup Tenant Management System
Mechanism 38 Process Process > 186
S 110 102
ave
Routines 36
Tenant 1 || Tenant 2 Tenant N
PL/SOQL Process || Process Process
34
— 18 N 104 ——————/ 28
API 32 Ul 30
~ ~ - - P -
~ g - - —
Appl. ~ 100, Appl. }~100y
Server{ 777 Server d
Environment
10
12
2 12 12
Processor ‘ Memory
System 12A | | System 12B | .
Input | Output FIGURE 1B
System 12C| | System 12D

U.S. Patent Jul. 7, 2015 Sheet 3 of 24 US 9,075,766 B2

208 220 [Pod |24
/_ !
216 A¢ {22
ore 228
o ¥ sutent [d 248
&

e
ﬁ“,f Edge -
¢ Router 1 Switch 3

20f / S
_) Balancer Active ~ DBSwitch
212~ Edge Core 224 Q\ Firewal (10f2)
Router 2 Switch 2 Switch 4 236
Sy *_200
FIGURE 2A
236
Q 244
Pod

Switch 4
264 Wi
& 288
e/ S
= °7) =

Coﬁtent
Batch

Servers =3 e
Content S
Search | -

A) Batch
¢ ,—290 Servers Query 8 = Servers
‘L (‘ Servers =3 SAC
- ervers
Database ngr}\?/::e
Instance \ Y
L Database
Instance

{

298 N'Vl

= = Fileforce
Batancer NFS FIGURE 2B Storage

U.S. Patent

310 ——] Database system receives a

320 ——] Database system writes new

340
™ Add feed update to feed of first

Jul. 7, 2015 Sheet 4 of 24

request to update a first record

A 4

data to first record

A4

Generate feed update

A 4

record

A 4

Identify followers of first record

Y

360

__| Add the feed update to a news feed of

each follower

A 4

Follower accesses his/her news feed
and sees the update

FIGURE 3

US 9,075,766 B2

US 9,075,766 B2

Sheet 5 of 24

Jul. 7, 2015

U.S. Patent

=T v 34NOid
(1emoy|04)
v Jesn puooeg 9
pJ023] iosn
pud JO Po8)J
JO pesy 10} 1senbay 00v
10} 1senbay
oTF FT% Ger .\
wolshg asegeleq 3[1j04d
aseqgeled s|yoid JOMO|[|0
G
1% 5 ayepdn
asegeleq Poo} MON
10083 ayepdn
P v poa) MoN
T4 % Ly
piooay z (s)10s8s9001d) [Te}%
gjep MaN) nW\ |) Jesn sl
7 X pJoooy
0} 9jepd
0Zh 1 81epan

U.S. Patent Jul. 7, 2015 Sheet 6 of 24 US 9,075,766 B2

510 Database system identifies an
7 action of a first user that triggers
an event

A 4 NO
520 —— Does the event qualify for a

feed update?

Stop

Y

Yes

Y

Generate feed update about the

530 — .
action

A 4

540 —— Addfeed update to feed of first
user

A 4

550 —1 ldentify followers of first user

Y

Add the feed update to a news

560 feed of each follower

Y

570 ——1 Follower accesses the news
feed and sees the feed update

FIGURE 5

U.S. Patent Jul. 7, 2015 Sheet 7 of 24 US 9,075,766 B2

»— 600

610 —| Database system receives a
message associated with a user

Yy

620 —| Add message to a feed (e.g. as
a profile feed) of the user

\ 4

630
\ Database system identifies
followers of user

Y

640 —_[Add the message to a news feed
of each follower

\ 4

650 — Follower accesses a news feed
and sees the message

A4

660 — Database system receives a
comment about the message

Y

670 —{ Add comment to the news feed
of each follower

FIGURE 6

US 9,075,766 B2

Sheet 8 of 24

Jul. 7, 2015

U.S. Patent

Z F4N9Id

-dopisap Aw Buljjas inoge Bupjuiyl
‘s1enduwion AuBll 00) BARY |

swepe wes 8

iAepo) yoogieu mau A 3109
gzrunsew uus R

HOOHIBU MBU aUj} 988 0} Hem

juen Buudg siy} S|ESP BWIoSBME

yim 1no Buiwoo st jjag piesy |
swepe” wes

-dnoJf e se
MoJjo4 0} shuyy Jo adoad pui4

fogil v @8g (3) Bummoyod

SFEls
gl)

_ JUBWIWIOD € Bl

Wd 887 ‘ABpIiSo s
‘aUo AJUo 811 S} “ONAS Japun 1BUBLU @Y} UO SI 9jY 84} Janeg (ig v

Nd 847 Aepieisep | /e
‘Bupaxeyy ul BOISSS[0 M|e} ‘punocle yse ||| si1oopy Aepy

W 85ir ABPISISBA AL "a0uis sowl bk
M3} B PONPOSs USa] SBY } £IUSIUCT Ul Y0340 NOA PIp '8ins JON UOXeg sawep

Nd 817 ‘Aepisjsap

1817 81820

\ W SEY [11g jUIUl | wosuyor efi3

weay Ap @w

sapunuoddo @w

\ JUBIWES widy g w m
0gL &80, DNAS 10l 98p 810uAaY 8} ARY SUOAUR $80(] SiRH 19ied)

sapiy DH_

/ONN — :

'SJ3qLIBW LB} SDIACU BIOW BU}
Joj sigepeal Aaa s ‘uidep jo ig e aunb o off jou ssop 3t yBnoyye
*SSBUISNQ INC JO spuaLodwod BuiAepun ay} SSUIINO USWNI0P Syt

A 080 D

1apeyD yoiees Mu

(Ldd) peojumog MaIA syooqieN - subisul aannedwod

JUBWIGT wd} L1¢ SHOOGION — SIydisu| aan

Aa/Eoo Juanoop ay) pejsod sey Janeg |ig wu

0L 6002 ‘vZ Aing Aepoy,

ond) juiig woeRy

&

fostl iy ees () siequiapy

@ sbupes Jequisw
° sBumas dnoib

_ LU BUBIOM NoA 18 E&s_ SHIALNAINOD

‘AlsAoaje aioll ZAX 1suiefe 91adiiod 0] sn MOJE ||IM Jey) UoBUIoU! 21eyS 03 adeid v

dnoiny oannodwo) 7AX

DSNHHIO

spieogyseg suodey senmnyoddg sjoRlUCD ﬂ::ouuq‘E ojosd AN swioy
S

pnop) sefes |

woboy dipHd dmeg suie Jeyied

010f5o]Es

~

US 9,075,766 B2

Sheet 9 of 24

Jul. 7, 2015

U.S. Patent

8 FdNOId

swILOY B S |

Nd g2:1 ‘Aepiossp
‘ABo1ens SSNOSIP 0] JueM NOA Ji Bul 8 Bl aAS) “1ESA 1SE| JUNODD. SIY] U0 PB3JoM | Jexied AeH Jeneg |ng |1 %)

o3

BWWoD wdy ¢ (80, DNAS WO 09D al0uka) aul dARY BUOAUE SROQ SIel Joxled

)

UBWINo wd ¢ ‘Aepisisep [& 4
JUNOB0R ZAXH U3 U0 aji| Asneq doyde punose uopiediuos ybnoy awos Buelb s1,5A4 YseN ou3g \b

6002 ‘ez Ainp Aepasysap

WBWWOY € Sl |

Wel 88:21 ‘Aepiaisay “afiuajeyo & aq 03 Buioh s auo siy ‘saj, ddey ayer /m\

_2<mt:.>mv§ww>.mc:wemﬂ:_EEIBﬁmotw Qum’

-

JUSUIUIOY) wieg L1/ ‘Aepiaise A MEzL-AundoddOg uc onpoid Z pnojD aoiAss INo au0idxs O} SJUBM ZAX Janeg g mv

TISWe) We i/ ‘Aeplaiss s
MezL-Aunpoddoy# uo [eacidde Joy palliwigns usag Jsnf sey Juncosip e s1aBpRIM 0001 — oUf ‘ZAX %

‘vz Ainp Aepo
/ovm 6002 ¥ AInf Aepoj

E\}\j omd I wuri & uoeny

LU0 Bupjiom noA ale _.mc>>~

(1) 19040 5 «

m wig aohaay DH_

Jsepusie) [

$186DIM 000°Z ~ swoy 6D

siafipim
0006 - wWooaslosales €

woveasojseles Ly

SWoy bU

Howsg e fy

G21eag eoUEAPY
umo | swey oy Juwir

[oo]| _

MEZL-Ajunuoddo 4

& Il yoieag }
yoiesg

spieoquseq suodoy BGEIIULILECIM S)oBlUO) SUncody sdnold ojyoid AN owioH

u:o_umw_mwu mobot dis dnigg suseH Jsyied

U.S. Patent Jul. 7, 2015 Sheet 10 of 24 US 9,075,766 B2
Event Object Created by Event Comment Time/
D911 ID 912 ID 913 ID 931 932 Date 933
“ « 10'21 '201 O
E1 0615 U5 E37 =32 PM
E2 0489 U101 E37 9-17-2010

Event History Table 910

New
value 923

Old value
922

Event
ID 921

Comment Table 930

E37 300 400

E37 4.23 4.10

: Field Change Table
920

User ID
941

us19

Object
ID 942

0615

U819 0489

U719 0615

User Subscription
Table 940

Event Post Text Time/
ID 951 052 Date 953
- 10-11-2010
E69 412 PM
EQ0 “o 8-12-2010
) Post Table 950
User Event
1D 961 ID 962
Us19 E37
us19 E90
u719 E37

FIGURE 9A

News Feed Table

960

U.S. Patent Jul. 7, 2015 Sheet 11 of 24 US 9,075,766 B2

’/,_ 900

901 Receive one or more properties of
Y an object stored in the database
system

902 Receive one or more criteria about
Y which users are to automatically
follow the object

903 Determine whether the one or
\ more properties of the object
satisfy the one or more criteria for
a first user

|

904 ~— If the criteria are satisfied, the
object is associated with the first
user

FIGURE 9B

U.S. Patent Jul. 7, 2015 Sheet 12 of 24 US 9,075,766 B2

1010 —| Receive data indicative of an
event

v
Determine whether the event is
being tracked for inclusion into
feed tables

1020 —

Y

1030
\ Write event to an event history
table

l 1050
1040 v
\ Update field Update post

change table table

\ 4

1060 — Receive a comment for an event
and add to a comment table

FIGURE 10

U.S. Patent Jul. 7, 2015 Sheet 13 of 24

1110 —| Receive a query for an events
history table

1120 . Check to determine if the user
can view the record feed

|

1130
\ Check field level security table to
determine whether the user can
see particular fields

1140
\ Display feed items to which the
user has access

FIGURE 11

US 9,075,766 B2

U.S. Patent

Jul. 7, 2015 Sheet 14 of 24

1210 Y user for an events history table

Receive a query from a second

to see a first user’s profile feed

!

1220 —

Perform security check whether
second user can see first user's
profile feed

1230

1231 —~ number of matching entries from

\ 4
Perform a security
- check on specific feed

items

'

Retrieve a predetermined

the event history table

h 4

Organize the record identifiers by type and

1232 — check whether the second can see the

record types

US 9,075,766 B2

Y

1233 ~—

If can see type, then proceed to check
access for specific records

l

1234 —

Use field sharing rules to determine if
certain fields are not viewable

l

Repeat steps 1231-1234 until a
stopping criteria is reached

FIGURE 12

U.S. Patent Jul. 7, 2015 Sheet 15 of 24 US 9,075,766 B2

— 1300

1310 — Receive data indicative of an
event

|

1320 ——_ Determine objects
associated with the event

l

1330] Determine users {ollowing the
even

|

Write followers of the event along
with an event identifier to a news
feed table

|

1350 ———_[Receive a request for a
news feed from a user

|

Access news feed table and other
tables to generate feed items for
display

1340 —

1360 —

FIGURE 13

U.S. Patent Jul. 7, 2015 Sheet 16 of 24 US 9,075,766 B2

1400
'

Receive one or more criteria
specifying which feed items are to be
displayed to a first user

1420 — ldentify feed items of one or more
selected objects that match the criteria

Display the feed items that
1430~ match the criteria to the first user
in the custom feed

FIGURE 14

U.S. Patent Jul. 7, 2015 Sheet 17 of 24 US 9,075,766 B2

/-1500

Gomputer implemented method for determining whether to contim@

a relationship in an online social network

1504
/‘

Maintain, at a server, data entries in one or more database tables,

each data entry identifying: an entity, a user having a social
networking relationship with the entity, and an affinity score
indicating an amount of interaction by the user with the entity

‘ /1508

For a data entry, divide the affinity score by a current value of an
inflation factor to determine a normalized affinity score

‘ /—1512

Determine a ratio of the normalized affinity score to a measure of
an amount of content associated with the entity and published in a
feed accessible by the user

l /-1516

Compare the ratioc with a threshold

Does
the ratio meet or traverse the
threshold?

Identify the social networking relationship between the user and
the entity of the data entry as a candidate for being discontinued

L /1528

Generate a first communication including a recommendation to
discontinue the social networking relationship between the user
and the entity

!

(Go to 1532)
FIGURE 15A

U.S. Patent Jul. 7, 2015 Sheet 18 of 24 US 9,075,766 B2

(From 1528)

1632
/—-

Provide the first communication to a computing device associated
with the user

& . 1536

Receive a second communication from the computing device
associated with the user

Y

Does the
Deny second communication include a
confirmation or a denial of the
recommendation?

Confirm

Y 148 Y 154
Increase the affinity score by Discontinue or suspend the
a margin social networking relationship
between the user and the
entity

FIGURE 15B

U.S. Patent Jul. 7, 2015 Sheet 19 of 24 US 9,075,766 B2

/-1600

Gomputer implemented method for determining whether to continu5

a relationship in an online social network

1604
/’

Maintain, at a server, data entries in one or more database tables,
each data entry identifying: an entily, a user having a social
networking relationship with the entity, and an affinity score
indicating an amount of interaction by the user with the entity

‘ K1608

For a data entry, divide the affinity score by a current value of an
inflation factor to determine a normalized affinity score

¢ /-1612

Determine a ratio of the normalized affinity score to a measure of
an amount of content associated with the entity and published in a
feed accessible by the user

‘ —1616

Compare the ratio with a threshold

L 1620

Does
the ratio meet or traverse the
threshold?

D —

1624
/‘

Identify the social networking relationship between the identified
user and the identified entity of the data entry as a candidate for
being discontinued

‘ . 1628

Discontinue or suspend the social networking relationship between
the user and the entity

FIGURE 16

U.S. Patent Jul. 7, 2015 Sheet 20 of 24 US 9,075,766 B2

Computer implemented method for determining
whether to continue relationships in an
online social network
r1704

Maintain, at a server, data entries in one or more database tables,
each data entry identifying: an entity, a user having a social

networking relationship with the entity, and an affinity score
indicating an amount of interaction by the user with the entity
1708
/—'
For a data entry, determine a ratio of the affinity score to a
measure of an amount of content associated with the entity and
published in a feed accessible by the user
1716
Y -
Compare the ratio with a threshold
Does 1722
the ratio meet or traverse the No -
threshold?
1724
/—

ldentify the user and the entity as candidates for discontinuing the
social networking relationship therebetween

FIGURE 17

U.S. Patent Jul. 7, 2015 Sheet 21 of 24 US 9,075,766 B2

1800
/’
Computer implemented method for determining
whether to continue relationships
in an online social network
1804
/’

Maintain, at a server, data entries in one or more database tables,
each data entry identifying: an entity, a user having a social
networking relationship with the entity, and an affinity score
indicating an amount of interaction by the user with the entity

¢ 1808

For each data entry, determine a ratio of the affinity score to a
measure of an amount of content associated with the entity and
published in a feed accessibie by the user

‘ /—1812

Rank the ratios in numerical order

¢ 1816

Select one or more of the data entries corresponding to one or
more of the ranked ratios according to a position of the one or
more ranked ratios in the numerical order

i
X e

- -

- ~L
--" Dotheratios ~~<
- S~ 1822
.~~~ ofthe selectedone ormore "~~. No_____ Vs
"~~~ . data entries meet or traverse _.-~

“~~.__athreshold? _--~

tYes
~-~-1824
\/ 18

2 identify the user and the entity of the selected one or more data |
: entries as candidates for discontinuing the social networking |
: relationship therebetween :

FIGURE 18

US 9,075,766 B2

Sheet 22 of 24

Jul. 7, 2015

U.S. Patent

6/ F4N9id
gl n@anmlm D8V - JUN0COdY SIUOM UIAM
Sl ¥Z61 gV - Junodoy 0¥6F ussjQ eor
0z 2261 MEZL - Ayunpoddo piig pelg
0z vi61 0z61 MEZL - Ajunpoddo 8E61 uss|Q dop
14 8161 063 1sod uung yoez
14 o161 063 1s0d S uasjQ eof
14 Zi6l yi6l 063 1sod y¥61 s Aejjeys
¢ Z16T dnoig sannaduwion ZAX YEGL uas|o oop
e OT6T dnousy aaedwon ZAX V671 SuIBH Joxed
9 3061 uunqQ yoez v61 yrws AsjBys
0L 0/61 9061 uung yoez ce6l ussjQ sop
SWaY} Pos4 JO JBQUINN 84005 Apuily Aug Jasn

086 _\/» 056 T/»
0061 A

qomv‘;/»

g6l 111»

961
e

WN@Q‘

0961
<L

US 9,075,766 B2

Sheet 23 of 24

Jul. 7, 2015

U.S. Patent

q0¢ 44N9i4
ZI0Z 9 063 1s0d uung yoez
890¢ 9 063 1s0d uss|Q @or
¥90¢ z 063 180d yuws Asjeys
9100Gg AUy Anug Jasn

¥20Z l/»

woom./»

Somul»

000¢ A
voe F64N9Id
¢l0c L 064 isod uung yoez
890¢ c 063 1s0d uasj(sor
¥90¢ - 063 1s0d yuws Asjjeus
109G AUy Aug Jasn

0002

A vmom).»

SONL

Som).»

A4

A A

4014

444

yeoe

404

|44\

yeoe

US 9,075,766 B2

Sheet 24 of 24

Jul. 7, 2015

U.S. Patent

L 34N
9Z¢1¢
Swiay| poa4
0 0 A S oL MON 10 #
[4A%7
(Ze+0¢) (9L +0¢) (8+¥L) (p+9) (z+2) 8100g AUy
G/£6°0 681 Gl L Gl } pazijelioN
gTie
(0+91L+8+¥+2) (9L+8+¥+2) (8+y+2) (p+2) 8J00g
0 0¢) 9 Z Ay
vrie
VA gl 8 14 Z iZ = (M)
(syuow) i _ _ _ _ _
own G=} =1 €= Z=1 L=) 0=1
- “ S Sl Sl Sl .
oovw.\\

US 9,075,766 B2

1
COMPUTER IMPLEMENTED METHODS
AND APPARATUS FOR DETERMINING
WHETHER TO CONTINUE RELATIONSHIPS
IN AN ONLINE SOCIAL NETWORK

PRIORITY DATA

This patent document claims priority to commonly
assigned U.S. Provisional Patent Application No. 61/670,
704, titled “System and Method for Optimizing a Social
Network Feed”, by Joel Palmert, filed on Jul. 12, 2012, which
is hereby incorporated by reference in its entirety and for all
purposes.

COPYRIGHT NOTICE

A portion of the disclosure of this patent document con-
tains material which is subject to copyright protection. The
copyright owner has no objection to the facsimile reproduc-
tion by anyone of the patent document or the patent disclosure
as itappears in the United States Patent and Trademark Office
patent file or records but otherwise reserves all copyright
rights whatsoever.

TECHNICAL FIELD

This patent document relates generally to providing on-
demand services in an online social network using a database
system and, more specifically, to techniques for associating
and disassociating entities of the social network.

BACKGROUND

“Cloud computing” services provide shared resources,
applications, and information to computers and other devices
upon request. In cloud computing environments, services can
be provided by one or more servers accessible over the Inter-
net rather than installing software locally on in-house com-
puter systems. Cloud computing typically involves over-the-
Internet provision of dynamically scalable and often
virtualized resources. Technological details can be abstracted
from the users who no longer have need for expertise in, or
control over, the technology infrastructure “in the cloud” that
supports them.

Database resources can be provided in a cloud computing
context. However, with conventional database management
techniques, it can be difficult for one user to know about the
activity of other users of a database system in the cloud. For
example, the actions of a particular user, such as a salesper-
son, on a database resource may be important to the user’s
boss. The salesperson can create a report about what the
salesperson has done and email it to the boss, but such reports
may be untimely and incomplete. Also, it may be difficult to
identify other users who might benefit from the information
in the report.

BRIEF DESCRIPTION OF THE DRAWINGS

The included drawings are for illustrative purposes and
serve only to provide examples of possible structures and
operations for the disclosed inventive systems, apparatus,
methods and computer-readable storage media for determin-
ing whether to continue relationships in an online social net-
work. These drawings in no way limit any changes in form
and detail that may be made by one skilled in the art without
departing from the spirit and scope of the disclosed imple-
mentations.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 1A shows a block diagram of an example of an envi-
ronment 10 in which an on-demand database service can be
used in accordance with some implementations.

FIG. 1B shows a block diagram of an example of some
implementations of elements of FIG. 1A and various possible
interconnections between these elements.

FIG. 2A shows a system diagram illustrating an example of
architectural components of an on-demand database service
environment 200 according to some implementations.

FIG. 2B shows a system diagram further illustrating an
example of architectural components of an on-demand data-
base service environment according to some implementa-
tions.

FIG. 3 shows a flowchart of an example of a method 300 for
tracking updates to a record stored in a database system,
performed in accordance with some implementations.

FIG. 4 shows a block diagram of an example of compo-
nents of a database system configuration 400 performing a
method for tracking an update to a record according to some
implementations.

FIG. 5 shows a flowchart of an example of a method 500 for
tracking actions of a user of a database system, performed in
accordance with some implementations.

FIG. 6 shows a flowchart of an example of a method 600 for
creating a news feed from messages created by a user about a
record or another user, performed in accordance with some
implementations.

FIG. 7 shows an example of a group feed on a group page
according to some implementations.

FIG. 8 shows an example of a record feed containing a feed
tracked update, post, and comments according to some imple-
mentations.

FIG. 9A shows an example of a plurality of tables that may
be used in tracking events and creating feeds according to
some implementations.

FIG. 9B shows a flowchart of an example of a method 900
for automatically subscribing a user to an object in a database
system, performed in accordance with some implementa-
tions.

FIG. 10 shows a flowchart of an example of a method 1000
for saving information to feed tracking tables, performed in
accordance with some implementations.

FIG. 11 shows a flowchart of an example of a method 1100
for reading a feed item as part of generating a feed for display,
performed in accordance with some implementations.

FIG. 12 shows a flowchart of an example of a method 1200
for reading a feed item of a profile feed for display, performed
in accordance with some implementations.

FIG. 13 shows a flowchart of an example of a method 1300
of storing event information for efficient generation of feed
items to display in a feed, performed in accordance with some
implementations.

FIG. 14 shows a flowchart of an example of a method 1400
for creating a custom feed for users of a database system using
filtering criteria, performed in accordance with some imple-
mentations.

FIGS. 15A and 15B show a flowchart of an example of a
computer implemented method 1500 for determining
whether to continue a relationship in an online social net-
work, performed in accordance with some implementations.

FIG. 16 shows a flowchart of an example of a computer
implemented method 1600 for determining whether to con-
tinue a relationship in an online social network, performed in
accordance with some implementations.

FIG. 17 shows a flowchart of an example of a computer
implemented method 1700 for determining whether to con-

US 9,075,766 B2

3

tinue relationships in an online social network, performed in
accordance with some implementations.

FIG. 18 shows a flowchart of an example of a computer
implemented method 1800 for determining whether to con-
tinue relationships in an online social network, performed in
accordance with some implementations.

FIG. 19 shows an example of a database table 1900 iden-
tifying social networking relationships between users and
entities, according to some implementations.

FIGS. 20A and 20B show an example of a database table
2000 identifying social networking relationships between
users and entities, according to some implementations.

FIG. 21 shows an example of a timeline 2100 for monitor-
ing user interactions and maintaining affinity scores in rela-
tion to an inflation factor, according to some implementa-
tions.

DETAILED DESCRIPTION

Examples of systems, apparatus, methods and computer-
readable storage media according to the disclosed implemen-
tations are described in this section. These examples are being
provided solely to add context and aid in the understanding of
the disclosed implementations. It will thus be apparent to one
skilled in the art that implementations may be practiced with-
out some or all of these specific details. In other instances,
certain process/method operations also referred to herein as
“blocks,” have not been described in detail in order to avoid
unnecessarily obscuring implementations. Other applica-
tions are possible, such that the following examples should
not be taken as definitive or limiting either in scope or setting.

In the following detailed description, references are made
to the accompanying drawings, which form a part of the
description and in which are shown, by way of illustration,
specific implementations. Although these implementations
are described in sufficient detail to enable one skilled in the art
to practice the disclosed implementations, it is understood
that these examples are not limiting, such that other imple-
mentations may be used and changes may be made without
departing from their spirit and scope. For example, the blocks
of methods shown and described herein are not necessarily
performed in the order indicated. It should also be understood
that the methods may include more or fewer blocks than are
indicated. In some implementations, blocks described herein
as separate blocks may be combined. Conversely, what may
be described herein as a single block may be implemented in
multiple blocks.

Various implementations described or referenced herein
are directed to different methods, apparatus, systems, and
computer-readable storage media for determining whether to
continue relationships in an online social network, also
referred to herein as a social networking system. Online
social networks are increasingly becoming a common way to
facilitate communication among people, any of whom can be
recognized as users of a social networking system. One
example of an online social network is Chatter®, provided by
salesforce.com, inc. of San Francisco, Calif. salesforce.com,
inc. is a provider of social networking services, customer
relationship management (CRM) services and other database
management services, any of which can be accessed and used
in conjunction with the techniques disclosed herein in some
implementations. These various services can be provided in a
cloud computing environment, for example, in the context of
a multi-tenant database system. Thus, the disclosed tech-
niques can be implemented without having to install software
locally, thatis, on computing devices of users interacting with
services available through the cloud. While the disclosed

40

45

55

4

implementations are often described with reference to Chat-
ter®, those skilled in the art should understand that the dis-
closed techniques are neither limited to Chatter® nor to any
other services and systems provided by salesforce.com, inc.
and can be implemented in the context of various other data-
base systems and/or social networking systems such as Face-
book®, LinkedIn®, Twitter®, Google+®, Yammer® and
Jive® by way of example only.

Some online social networks can be implemented in vari-
ous settings, including organizations. For instance, an online
social network can be implemented to connect users within an
enterprise such as a company or business partnership, or a
group of users within such an organization. For instance,
Chatter® can be used by employee users in a division of a
business organization to share data, communicate, and col-
laborate with each other for various social purposes often
involving the business of the organization. In the example of
a multi-tenant database system, each organization or group
within the organization can be a respective tenant of the
system, as described in greater detail below.

In some online social networks, users can access one or
more information feeds, which include information updates
presented as items or entries in the feed. Such a feed item can
include a single information update or a collection of indi-
vidual information updates. A feed item can include various
types of data including character-based data, audio data,
image data and/or video data. An information feed can be
displayed in a graphical user interface (GUI) on a display
device such as the display of a computing device as described
below. The information updates can include various social
network data from various sources and can be stored in an
on-demand database service environment. In some imple-
mentations, the disclosed methods, apparatus, systems, and
computer-readable storage media may be configured or
designed for use in a multi-tenant database environment.

In some implementations, an online social network may
allow a user to follow data objects in the form of records such
as cases, accounts, or opportunities, in addition to following
individual users and groups of users. The “following” of a
record stored in a database, as described in greater detail
below, allows a user to track the progress of that record.
Updates to the record, also referred to herein as changes to the
record, are one type of information update that can occur and
be noted on an information feed such as a record feed or a
news feed of a user subscribed to the record. Examples of
record updates include field changes in the record, updates to
the status of a record, as well as the creation of the record
itself. Some records are publicly accessible, such that any
user can follow the record, while other records are private, for
which appropriate security clearance/permissions are a pre-
requisite to a user following the record.

Information updates can include various types of updates,
which may or may not be linked with a particular record. For
example, information updates can be user-submitted mes-
sages or can otherwise be generated in response to user
actions or in response to events. Examples of messages
include: posts, comments, indications of a user’s personal
preferences such as “likes™ and “dislikes”, updates to a user’s
status, uploaded files, and user-submitted hyperlinks to social
network data or other network data such as various docu-
ments and/or web pages on the Internet. Posts can include
alpha-numeric or other character-based user inputs such as
words, phrases, statements, questions, emotional expres-
sions, and/or symbols. Comments generally refer to
responses to posts or to other information updates, such as
words, phrases, statements, answers, questions, and reaction-
ary emotional expressions and/or symbols. Multimedia data

US 9,075,766 B2

5

can be included in, linked with, or attached to a post or
comment. For example, a post can include textual statements
in combination with a JPEG image or animated image. A like
or dislike can be submitted in response to a particular post or
comment. Examples of uploaded files include presentations,
documents, multimedia files, and the like.

Users can follow a record by subscribing to the record, as
mentioned above. Users can also follow other entities such as
other types of data objects, other users, and groups of users.
Feed tracked updates regarding such entities are one type of
information update that can be received and included in the
user’s news feed. Any number of users can follow a particular
entity and thus view information updates pertaining to that
entity on the users’ respective news feeds. In some social
networks, users may follow each other by establishing con-
nections with each other, sometimes referred to as “friend-
ing” one another. By establishing such a connection, one user
may be able to see information generated by, generated about,
or otherwise associated with another user. For instance, a first
user may be able to see information posted by a second user
to the second user’s personal social network page. One imple-
mentation of such a personal social network page is a user’s
profile page, for example, in the form of a web page repre-
senting the user’s profile. In one example, when the first user
is following the second user, the first user’s news feed can
receive a post from the second user submitted to the second
user’s profile feed. A user’s profile feed is also referred to
herein as the user’s “wall,” which is one example of an infor-
mation feed displayed on the user’s profile page.

In some implementations, an information feed may be
specific to a group of users of an online social network. For
instance, a group of users may publish a news feed. Members
of the group may view and post to this group feed in accor-
dance with a permissions configuration for the feed and the
group. Information updates in a group context can also
include changes to group status information.

In some implementations, when data such as posts or com-
ments input from one or more users are submitted to an
information feed for a particular user, group, object, or other
construct within an online social network, an email notifica-
tion or other type of network communication may be trans-
mitted to all users following the user, group, or object in
addition to the inclusion of the data as a feed item in one or
more feeds, such as a user’s profile feed, a news feed, or a
record feed. In some online social networks, the occurrence of
such a notification is limited to the first instance of a published
input, which may form part of a larger conversation. For
instance, a notification may be transmitted for an initial post,
but not for comments on the post. In some other implemen-
tations, a separate notification is transmitted for each such
information update.

Some implementations of the disclosed systems, appara-
tus, methods, and computer-readable storage media are con-
figured to determine whether to continue relationships
between users and various entities in an online social net-
work. For instance, the disclosed techniques can be imple-
mented to optimize a first user’s news feed by ferreting out
entities such as groups, records, posts and second users with
which the first user has established social networking rela-
tionships but that are no longer pertinent to the first user. The
disclosed techniques can be implemented to: i) automatically
identify entities responsible for generating published feed
content which a user has demonstrated a lack of interest in
receiving, for instance, by not interacting with the published
content over a timeframe, and ii) generate messages recom-
mending that the user discontinue or suspend relationships
with the identified entities. In some alternative implementa-

10

15

20

25

30

35

40

45

50

55

60

65

6

tions, a relationship can be automatically discontinued or
suspended when certain criteria are satisfied. The disclosed
implementations can be practiced in any social networking
system or systems in which users can establish relationships
with other entities such that information from or regarding the
other entities is published to the user’s news feed and/or to
other feeds accessible by the user.

One of the issues with many conventional social networks
is the large amount of information updates which a user can
receive in a feed as a result of establishing social networking
relationships with entities in the social network. For instance,
afirst user’s news feed can begin receiving numerous updates
regarding other second users when the first user friends or
follows those second users. In the case of Chatter®, numer-
ous additional updates from other various types of entities can
be published to the first user’s news feed as a result of the first
user following or liking entities such as groups, records, data
files, and CRM objects such as leads, cases, accounts, oppor-
tunities, tasks, contacts, etc. In some instances, the first user’s
news feed can also begin receiving updates regarding entities
such as groups when the first user is added to those groups.

While it may be or seem important to receive updates about
an entity in the near term, it may be less important or no longer
important as time progresses. Experience has shown that
users tend to establish social networking relationships in the
form of following, friending, liking, commenting, joining,
etc. withtoo many entities and sometimes not with the entities
most relevant to the users’ activities or interests. As a result,
users’ feeds often become cluttered with a large volume of
less relevant and irrelevant feed items from various sources as
outlined above.

In most presentations of news feeds on a display device,
posts and other types of information updates are published as
feed items arranged in linear fashion in the form of a vertical
scroll on a graphical user interface. The feed items are often
arranged chronologically, with newer feed items presented at
the top of the scroll. When too many feed items about numer-
ous entities are included, it can be difficult for any user view-
ing the presentation to identify any information of particular
relevance much less digest related feed items of interest with-
out spending lots of time scrolling up and down through the
feed. Any number of irrelevant feed items can be interspersed
among relevant feed items, causing the user to exert unnec-
essary mental effort (in addition to time) scrolling, skimming,
reading and consuming selected feed items while mentally
filtering out others. A cluttered feed can be particularly inef-
ficient to navigate for users of mobile devices with limited
screen space, such as smartphones or tablets, when a user
often wants to quickly identify and focus on relevant feed
items.

With conventional systems, the process to “clean up” or
optimize a collection of followed users, groups, records, etc.
is manual. The user has to spend the time and mental energy
to read through a list of followed entities and select those
entities which the user no longer wishes to follow or other-
wise maintain a social networking relationship with. Also,
such a list is often incomplete, as the list may not include
posts, CRM objects and other entities that the user may be
receiving updates about in a feed. For such omitted entities,
there may be no easy way to stop receiving updates. As a
result, even after the manual effort to prune a list of followed
entities, a social network feed may still have limited utility as
an information source—diminished by an overflow of infor-
mation.

In some implementations, a database table may be main-
tained to include entries identifying users’ relationships with
various social network entities. The table can be configured to

US 9,075,766 B2

7

store data quantifying an amount of interaction between a
given user and a given entity, for instance, the form of an
affinity score. Calculations can be performed as described in
greater detail below to compare a measure of the amount of
the given user’s interaction with a measure of an amount of
feed content regarding the given entity and published to the
user’s news feed. In some implementations, the particular
affinity score between a user and an entity can be updated in
response to each user interaction with the entity. In some
other implementations, affinity scores can be updated peri-
odically, for instance, as a nightly batch job to account for any
number of the user’s interactions with the entity during a
24-hour time period.

In some implementations, different point values can be
assigned to different types of interactions such as “likes”,
“comments” and requests for further content such as a “more”
selection. In some implementations, before adding the point
value of an interaction to the affinity score maintained in the
database table, the point value can be time inflated with a first
value of an inflation factor. By the same token, when the
affinity score is later retrieved from the database table to
determine whether to recommend discontinuing the relation-
ship with a given entity, the affinity score can again be
adjusted with a later second value of the inflation factor. Thus,
the inflation factor can be implemented to have a changing
value as a function of time. In this way, more recent interac-
tions can have a higher value, indicating higher importance,
than older interactions in terms of affinity score points.

A ratio of the adjusted, i.e. normalized affinity score to a
measure of the amount of information in the user’s feed
regarding the entity can be calculated. For example, the data-
base table mentioned above can be configured to also main-
tain data indicating a quantifiable amount of content regard-
ing the entity and published to the user’s feed, such as a
number of feed items. In some examples, this measure of feed
content can also be time inflated by the same value of the
inflation factor used to determine the normalized affinity
score, e.g., the later second value in the example above. In
such examples, because both the affinity score and the mea-
sure of feed content would both be normalized by the inflation
factor, the inflation factor can be omitted from the calcula-
tions. That is, the ratio can be calculated between the un-
adjusted affinity score retrieved from the table and the un-
adjusted measure of feed information retrieved from the
table. When the ratio is equal to or less than a specified
threshold, for example, a recommendation can be issued to
the user to suspend or discontinue the relationship with the
entity.

These and other implementations may be embodied in
various types of hardware, software, firmware, and combina-
tions thereof. For example, some techniques disclosed herein
may be implemented, at least in part, by computer-readable
media that include program instructions, state information,
etc., for performing various services and operations described
herein. Examples of program instructions include both
machine code, such as produced by a compiler, and files
containing higher-level code that may be executed by a com-
puting device such as a server or other data processing appa-
ratus using an interpreter. Examples of computer-readable
media include, but are not limited to, magnetic media such as
hard disks, floppy disks, and magnetic tape; optical media
such as CD-ROM disks; magneto-optical media; and hard-
ware devices that are specially configured to store program
instructions, such as read-only memory (“ROM”) devices
and random access memory (“RAM”) devices. These and

10

15

20

25

30

35

40

45

50

55

60

65

8

other features of the disclosed implementations will be
described in more detail below with reference to the associ-
ated drawings.

The term “multi-tenant database system” can refer to those
systems in which various elements of hardware and software
of a database system may be shared by one or more custom-
ers. For example, a given application server may simulta-
neously process requests for a great number of customers, and
a given database table may store rows of data such as feed
items for a potentially much greater number of customers.
The term “query plan” generally refers to one or more opera-
tions used to access information in a database system.

A “user profile” or “user’s profile” is generally configured
to store and maintain data about a given user of the database
system. The data can include general information, such as
name, title, phone number, a photo, a biographical summary,
and a status, e.g., text describing what the user is currently
doing. As mentioned below, the data can include messages
created by other users. Where there are multiple tenants, a
user is typically associated with a particular tenant. For
example, a user could be a salesperson of a company, which
is a tenant of the database system that provides a database
service.

The term “record” generally refers to a data entity, such as
an instance of a data object created by a user of the database
service, for example, about a particular (actual or potential)
business relationship or project. The data object can have a
data structure defined by the database service (a standard
object) or defined by a user (custom object). For example, a
record can be for a business partner or potential business
partner (e.g., a client, vendor, distributor, etc.) of the user, and
can include information describing an entire company, sub-
sidiaries, or contacts at the company. As another example, a
record can be a project that the user is working on, such as an
opportunity (e.g., a possible sale) with an existing partner, or
a project that the user is trying to get. In one implementation
of'a multi-tenant database system, each record for the tenants
has a unique identifier stored in a common table. A record has
data fields that are defined by the structure of the object (e.g.,
fields of certain data types and purposes). A record can also
have custom fields defined by a user. A field can be another
record or include links thereto, thereby providing a parent-
child relationship between the records.

The terms “information feed” and “feed” are used inter-
changeably herein and generally refer to a combination (e.g.,
a list) of feed items or entries with various types of informa-
tion and data. Such feed items can be stored and maintained in
one or more database tables, e.g., as rows in the table(s), that
can be accessed to retrieve relevant information to be pre-
sented as part of a displayed feed. The term “feed item™ (or
feed element) refers to an item of information, which can be
presented in the feed such as a post submitted by a user. Feed
items of information about a user can be presented in a user’s
profile feed of the database, while feed items of information
about a record can be presented in a record feed in the data-
base, by way of example. A profile feed and a record feed are
examples of different information feeds. A second user fol-
lowing a first user and a record can receive the feed items
associated with the first user and the record for display in the
second user’s news feed, which is another type of information
feed. In some implementations, the feed items from any num-
ber of followed users and records can be combined into a
single information feed of a particular user.

As examples, a feed item can be a message, such as a
user-generated post of text data, and a feed tracked update to
a record or profile, such as a change to a field of the record.
Feed tracked updates are described in greater detail below. A

US 9,075,766 B2

9

feed can be a combination of messages and feed tracked
updates. Messages include text created by a user, and may
include other data as well. Examples of messages include
posts, user status updates, and comments. Messages can be
created for a user’s profile or for a record. Posts can be created
by various users, potentially any user, although some restric-
tions can be applied. As an example, posts can be made to a
wall section of a user’s profile page (which can include a
number of recent posts) or a section of a record that includes
multiple posts. The posts can be organized in chronological
order when displayed in a graphical user interface (GUI), for
instance, on the user’s profile page, as part of the user’s profile
feed. In contrast to a post, a user status update changes a status
of'a user and can be made by that user or an administrator. A
record can also have a status, the update of which can be
provided by an owner of the record or other users having
suitable write access permissions to the record. The owner
can be a single user, multiple users, or a group. In one imple-
mentation, there is only one status for a record.

In some implementations, a comment can be made on any
feed item. In some implementations, comments are organized
as alistexplicitly tied to a particular feed tracked update, post,
or status update. In some implementations, comments may
not be listed in the first layer (in a hierarchal sense) of feed
items, but listed as a second layer branching from a particular
first layer feed item.

A “feed tracked update,” also referred to herein as a “feed
update,” is one type of information update and generally
refers to data representing an event. A feed tracked update can
include text generated by the database system in response to
the event, to be provided as one or more feed items for
possible inclusion in one or more feeds. In one implementa-
tion, the data can initially be stored, and then the database
system can later use the data to create text for describing the
event. Both the data and/or the text can be a feed tracked
update, as used herein. In various implementations, an event
can be an update of a record and/or can be triggered by a
specific action by a user. Which actions trigger an event can be
configurable. Which events have feed tracked updates created
and which feed updates are sent to which users can also be
configurable. Messages and feed updates can be stored as a
field or child object of the record. For example, the feed can be
stored as a child object of the record.

A “group” is generally a collection of users. In some imple-
mentations, the group may be defined as users with a same or
similar attribute, or by membership. In some implementa-
tions, a “group feed”, also referred to herein as a “group news
feed”, includes one or more feed items about any user in the
group. In some implementations, the group feed also includes
information updates and other feed items that are about the
group as a whole, the group’s purpose, the group’s descrip-
tion, and group records and other objects stored in association
with the group. Threads of information updates including
group record updates and messages, such as posts, comments,
likes, etc., can define group conversations and change over
time.

An “entity feed” or “record feed” generally refers to a feed
of feed items about a particular record in the database, such as
feed tracked updates about changes to the record and posts
made by users about the record. An entity feed can be com-
posed of any type of feed item. Such a feed can be displayed
on a page such as a web page associated with the record, e.g.,
ahome page of the record. As used herein, a “profile feed” or
“user’s profile feed” is a feed of feed items about a particular
user. In one example, the feed items for a profile feed include
posts and comments that other users make about or send to the
particular user, and status updates made by the particular user.

5

10

15

20

25

30

40

45

50

55

60

65

10

Such a profile feed can be displayed on a page associated with
the particular user. In another example, feed items in a profile
feed could include posts made by the particular user and feed
tracked updates initiated based on actions of the particular
user.

1. General Overview

Systems, apparatus, and methods are provided for imple-
menting enterprise level social and business information net-
working. Such implementations can provide more efficient
use of a database system. For instance, a user of a database
system may not easily know when important information in
the database has changed, e.g., about a project or client.
Implementations can provide feed tracked updates about such
changes and other events, thereby keeping users informed.

By way of example, a user can update a record in the form
of'a CRM object, e.g., an opportunity such as a possible sale
ot 1000 computers. Once the record update has been made, a
feed tracked update about the record update can then auto-
matically be provided, e.g., in a feed, to anyone subscribing to
the opportunity or to the user. Thus, the user does not need to
contact a manager regarding the change in the opportunity,
since the feed tracked update about the update is sent via a
feed right to the manager’s feed page or other page.

Next, mechanisms and methods for providing systems
implementing enterprise level social and business informa-
tion networking will be described with reference to several
implementations. First, an overview of an example of a data-
base system is described, and then examples of tracking
events for a record, actions of a user, and messages about a
user or record are described. Various implementations about
the data structure of feeds, customizing feeds, user selection
of records and users to follow, generating feeds, and display-
ing feeds are also described.

II. System Overview

FIG. 1A shows a block diagram of an example of an envi-
ronment 10 in which an on-demand database service can be
used in accordance with some implementations. Environment
10 may include user systems 12, network 14, database system
16, processor system 17, application platform 18, network
interface 20, tenant data storage 22, system data storage 24,
program code 26, and process space 28. In other implemen-
tations, environment 10 may not have all of these components
and/or may have other components instead of, or in addition
to, those listed above.

Environment 10 is an environment in which an on-demand
database service exists. User system 12 may be implemented
as any computing device(s) or other data processing appara-
tus such as amachine or system that is used by a userto access
a database system 16. For example, any of user systems 12
can be a handheld computing device, a mobile phone, a laptop
computer, a work station, and/or a network of such computing
devices. As illustrated in FIG. 1A (and in more detail in FIG.
1B) user systems 12 might interact via a network 14 with an
on-demand database service, which is implemented in the
example of FIG. 1A as database system 16.

An on-demand database service, implemented using sys-
tem 16 by way of example, is a service that is made available
to outside users, who do not need to necessarily be concerned
with building and/or maintaining the database system.
Instead, the database system may be available for their use
when the users need the database system, i.e., on the demand
of the users. Some on-demand database services may store
information from one or more tenants into tables ofa common
database image to form a multi-tenant database system
(MTS). A database image may include one or more database
objects. A relational database management system (RDBMS)
or the equivalent may execute storage and retrieval of infor-

US 9,075,766 B2

11

mation against the database object(s). Application platform
18 may be a framework that allows the applications of system
16 to run, such as the hardware and/or software, e.g., the
operating system. In some implementations, application plat-
form 18 enables creation, managing and executing one or
more applications developed by the provider of the on-de-
mand database service, users accessing the on-demand data-
base service via user systems 12, or third party application
developers accessing the on-demand database service via
user systems 12.

The users of user systems 12 may differ in their respective
capacities, and the capacity of a particular user system 12
might be entirely determined by permissions (permission
levels) for the current user. For example, where a salesperson
is using a particular user system 12 to interact with system 16,
that user system has the capacities allotted to that salesperson.
However, while an administrator is using that user system to
interact with system 16, that user system has the capacities
allotted to that administrator. In systems with a hierarchical
role model, users at one permission level may have access to
applications, data, and database information accessible by a
lower permission level user, but may not have access to cer-
tain applications, database information, and data accessible
by a user at a higher permission level. Thus, different users
will have different capabilities with regard to accessing and
modifying application and database information, depending
on a user’s security or permission level, also called authori-
zation.

Network 14 is any network or combination of networks of
devices that communicate with one another. For example,
network 14 can be any one or any combination of a LAN
(local area network), WAN (wide area network), telephone
network, wireless network, point-to-point network, star net-
work, token ring network, hub network, or other appropriate
configuration. Network 14 can include a TCP/IP (Transfer
Control Protocol and Internet Protocol) network, such as the
global internetwork of networks often referred to as the
“Internet” with a capital “I.” The Internet will be used in many
of'the examples herein. However, it should be understood that
the networks that the present implementations might use are
not so limited, although TCP/IP is a frequently implemented
protocol.

User systems 12 might communicate with system 16 using
TCP/IP and, at a higher network level, use other common
Internet protocols to communicate, such as HI'TP, FTP, AFS,
WAP, etc. In an example where HTTP is used, user system 12
might include an HTTP client commonly referred to as a
“browser” for sending and receiving HTTP signals to and
from an HTTP server at system 16. Such an HTTP server
might be implemented as the sole network interface 20
between system 16 and network 14, but other techniques
might be used as well or instead. In some implementations,
the network interface 20 between system 16 and network 14
includes load sharing functionality, such as round-robin
HTTP request distributors to balance loads and distribute
incoming HTTP requests evenly over a plurality of servers. At
least for users accessing system 16, each of the plurality of
servers has access to the MTS’ data; however, other alterna-
tive configurations may be used instead.

In one implementation, system 16, shown in FIG. 1A,
implements a web-based customer relationship management
(CRM) system. For example, in one implementation, system
16 includes application servers configured to implement and
execute CRM software applications as well as provide related
data, code, forms, web pages and other information to and
from user systems 12 and to store to, and retrieve from, a
database system related data, objects, and Webpage content.

10

15

20

25

30

35

40

45

50

55

60

65

12

With a multi-tenant system, data for multiple tenants may be
stored in the same physical database object in tenant data
storage 22, however, tenant data typically is arranged in the
storage medium(s) of tenant data storage 22 so that data of
one tenant is kept logically separate from that of other tenants
so that one tenant does not have access to another tenant’s
data, unless such data is expressly shared. In certain imple-
mentations, system 16 implements applications other than, or
in addition to, a CRM application. For example, system 16
may provide tenant access to multiple hosted (standard and
custom) applications, including a CRM application. User (or
third party developer) applications, which may or may not
include CRM, may be supported by the application platform
18, which manages creation, storage of the applications into
one or more database objects and executing of the applica-
tions in a virtual machine in the process space of the system
16.

One arrangement for elements of system 16 is shown in
FIGS. 1A and 1B, including a network interface 20, applica-
tion platform 18, tenant data storage 22 for tenant data 23,
system data storage 24 for system data 25 accessible to sys-
tem 16 and possibly multiple tenants, program code 26 for
implementing various functions of system 16, and a process
space 28 for executing MTS system processes and tenant-
specific processes, such as running applications as part of an
application hosting service. Additional processes that may
execute on system 16 include database indexing processes.

Several elements in the system shown in FIG. 1A include
conventional, well-known elements that are explained only
briefly here. For example, each user system 12 could include
a desktop personal computer, workstation, laptop, PDA, cell
phone, or any wireless access protocol (WAP) enabled device
or any other computing device capable of interfacing directly
or indirectly to the Internet or other network connection. The
term “computing device” is also referred to herein simply as
a “computer”. User system 12 typically runs an HTTP client,
e.g., a browsing program, such as Microsoft’s Internet
Explorer browser, Netscape’s Navigator browser, Opera’s
browser, or a WAP-enabled browser in the case of a cell
phone, PDA or other wireless device, or the like, allowing a
user (e.g., subscriber of the multi-tenant database system) of
user system 12 to access, process and view information, pages
and applications available to it from system 16 over network
14. Each user system 12 also typically includes one or more
user input devices, such as a keyboard, a mouse, trackball,
touch pad, touch screen, pen or the like, for interacting with a
graphical user interface (GUI) provided by the browser on a
display (e.g., a monitor screen, LCD display, etc.) of the
computing device in conjunction with pages, forms, applica-
tions and other information provided by system 16 or other
systems or servers. For example, the user interface device can
be used to access data and applications hosted by system 16,
and to perform searches on stored data, and otherwise allow a
user to interact with various GUI pages that may be presented
to a user. As discussed above, implementations are suitable
for use with the Internet, although other networks can be used
instead of or in addition to the Internet, such as an intranet, an
extranet, a virtual private network (VPN), a non-TCP/IP
based network, any LAN or WAN or the like.

According to one implementation, each user system 12 and
all of its components are operator configurable using appli-
cations, such as a browser, including computer code run using
a central processing unit such as an Intel Pentium® processor
or the like. Similarly, system 16 (and additional instances of
an MTS, where more than one is present) and all of its com-
ponents might be operator configurable using application(s)
including computer code to run using processor system 17,

US 9,075,766 B2

13

which may be implemented to include a central processing
unit, which may include an Intel Pentium® processor or the
like, and/or multiple processor units. Non-transitory com-
puter-readable media can have instructions stored thereon/in,
that can be executed by or used to program a computing
device to perform any of the methods of the implementations
described herein. Computer program code 26 implementing
instructions for operating and configuring system 16 to inter-
communicate and to process web pages, applications and
other data and media content as described herein is preferably
downloadable and stored on a hard disk, but the entire pro-
gram code, or portions thereof, may also be stored in any
other volatile or non-volatile memory medium or device as is
well known, such as a ROM or RAM, or provided on any
media capable of storing program code, such as any type of
rotating media including floppy disks, optical discs, digital
versatile disk (DVD), compact disk (CD), microdrive, and
magneto-optical disks, and magnetic or optical cards, nano-
systems (including molecular memory ICs), or any other type
of computer-readable medium or device suitable for storing
instructions and/or data. Additionally, the entire program
code, or portions thereof, may be transmitted and downloaded
from a software source over a transmission medium, e.g., over
the Internet, or from another server, as is well known, or
transmitted over any other conventional network connection
as is well known (e.g., extranet, VPN, LAN, etc.) using any
communication medium and protocols (e.g., TCP/IP, HTTP,
HTTPS, Ethernet, etc.) as are well known. It will also be
appreciated that computer code for the disclosed implemen-
tations can be realized in any programming language that can
be executed on a client system and/or server or server system
such as, for example, C, C++, HIML, any other markup
language, Java™, JavaScript, ActiveX, any other scripting
language, such as VBScript, and many other programming
languages as are well known may be used. (Java™ is a trade-
mark of Sun Microsystems, Inc.).

According to some implementations, each system 16 is
configured to provide web pages, forms, applications, data
and media content to user (client) systems 12 to support the
access by user systems 12 as tenants of system 16. As such,
system 16 provides security mechanisms to keep each ten-
ant’s data separate unless the data is shared. If more than one
MTS is used, they may be located in close proximity to one
another (e.g., in a server farm located in a single building or
campus), or they may be distributed at locations remote from
one another (e.g., one or more servers located in city A and
one or more servers located in city B). As used herein, each
MTS could include one or more logically and/or physically
connected servers distributed locally or across one or more
geographic locations. Additionally, the term “server” is
meant to refer to a computing device or system, including
processing hardware and process space(s), an associated stor-
age medium such as a memory device or database, and, in
some instances, a database application (e.g., OODBMS or
RDBMS) as is well known in the art. It should also be under-
stood that “server system” and “server” are often used inter-
changeably herein. Similarly, the database objects described
herein can be implemented as single databases, a distributed
database, a collection of distributed databases, a database
with redundant online or offline backups or other redundan-
cies, etc., and might include a distributed database or storage
network and associated processing intelligence.

FIG. 1B shows a block diagram of an example of some
implementations of elements of FIG. 1A and various possible
interconnections between these elements. That is, FIG. 1B
also illustrates environment 10. However, in FIG. 1B ele-
ments of system 16 and various interconnections in some

20

35

40

45

50

14

implementations are further illustrated. FIG. 1B shows that
user system 12 may include processor system 12A, memory
system 12B, input system 12C, and output system 12D. FIG.
1B shows network 14 and system 16. FIG. 1B also shows that
system 16 may include tenant data storage 22, tenant data 23,
system data storage 24, system data 25, User Interface (UI)
30, Application Program Interface (API) 32, PL/SOQL 34,
save routines 36, application setup mechanism 38, applica-
tions servers 1001-100N, system process space 102, tenant
process spaces 104, tenant management process space 110,
tenant storage space 112, user storage 114, and application
metadata 116. In other implementations, environment 10 may
not have the same elements as those listed above and/or may
have other elements instead of, or in addition to, those listed
above.

User system 12, network 14, system 16, tenant data storage
22, and system data storage 24 were discussed above in FIG.
1A. Regarding user system 12, processor system 12A may be
any combination of one or more processors. Memory system
12B may be any combination of one or more memory devices,
short term, and/or long term memory. Input system 12C may
be any combination of input devices, such as one or more
keyboards, mice, trackballs, scanners, cameras, and/or inter-
faces to networks. Output system 12D may be any combina-
tion of output devices, such as one or more monitors, printers,
and/or interfaces to networks. As shown by FIG. 1B, system
16 may include a network interface 20 (of FIG. 1A) imple-
mented as a set of HTTP application servers 100, an applica-
tion platform 18, tenant data storage 22, and system data
storage 24. Also shown is system process space 102, includ-
ing individual tenant process spaces 104 and a tenant man-
agement process space 110. Each application server 100 may
be configured to communicate with tenant data storage 22 and
the tenant data 23 therein, and system data storage 24 and the
system data 25 therein to serve requests of user systems 12.
The tenant data 23 might be divided into individual tenant
storage spaces 112, which can be either a physical arrange-
ment and/or a logical arrangement of data. Within each tenant
storage space 112, user storage 114 and application metadata
116 might be similarly allocated for each user. For example,
a copy of a user’s most recently used (MRU) items might be
stored to user storage 114. Similarly, a copy of MRU items for
an entire organization thatis a tenant might be stored to tenant
storage space 112. A UI 30 provides a user interface and an
API 32 provides an application programmer interface to sys-
tem 16 resident processes to users and/or developers at user
systems 12. The tenant data and the system data may be stored
in various databases, such as one or more Oracle databases.

Application platform 18 includes an application setup
mechanism 38 that supports application developers’ creation
and management of applications, which may be saved as
metadata into tenant data storage 22 by save routines 36 for
execution by subscribers as one or more tenant process spaces
104 managed by tenant management process 110 for
example. Invocations to such applications may be coded
using PL/SOQL 34 that provides a programming language
style interface extension to API 32. A detailed description of
some PL/SOQL language implementations is discussed in
commonly assigned U.S. Pat. No. 7,730,478, titled
METHOD AND SYSTEM FOR ALLOWING ACCESS TO
DEVELOPED APPLICATIONS VIA A MULTI-TENANT
ON-DEMAND DATABASE SERVICE, by Craig Weissman,
issued on Jun. 1, 2010, and hereby incorporated by reference
in its entirety and for all purposes. Invocations to applications
may be detected by one or more system processes, which
manage retrieving application metadata 116 for the sub-

US 9,075,766 B2

15

scriber making the invocation and executing the metadata as
an application in a virtual machine.

Each application server 100 may be communicably
coupled to database systems, e.g., having access to system
data 25 and tenant data 23, via a different network connection.
For example, one application server 1001 might be coupled
via the network 14 (e.g., the Internet), another application
server 100N-1 might be coupled via a direct network link,
and another application server 100N might be coupled by yet
a different network connection. Transfer Control Protocol
and Internet Protocol (TCP/IP) are typical protocols for com-
municating between application servers 100 and the database
system. However, it will be apparent to one skilled in the art
that other transport protocols may be used to optimize the
system depending on the network interconnect used.

In certain implementations, each application server 100 is
configured to handle requests for any user associated with any
organization that is a tenant. Because it is desirable to be able
to add and remove application servers from the server pool at
any time for any reason, there is preferably no server affinity
for a user and/or organization to a specific application server
100. In one implementation, therefore, an interface system
implementing a load balancing function (e.g., an F5 Big-IP
load balancer) is communicably coupled between the appli-
cation servers 100 and the user systems 12 to distribute
requests to the application servers 100. In one implementa-
tion, the load balancer uses a least connections algorithm to
route user requests to the application servers 100. Other
examples of load balancing algorithms, such as round robin
and observed response time, also can be used. For example, in
certain implementations, three consecutive requests from the
same user could hit three different application servers 100,
and three requests from different users could hit the same
application server 100. In this manner, by way of example,
system 16 is multi-tenant, wherein system 16 handles storage
of, and access to, different objects, data and applications
across disparate users and organizations.

As an example of storage, one tenant might be a company
that employs a sales force where each salesperson uses sys-
tem 16 to manage their sales process. Thus, a user might
maintain contact data, leads data, customer follow-up data,
performance data, goals and progress data, etc., all applicable
to that user’s personal sales process (e.g., in tenant data stor-
age 22). In an example of a MTS arrangement, since all of the
data and the applications to access, view, modify, report,
transmit, calculate, etc., can be maintained and accessed by a
user system having nothing more than network access, the
user can manage his or her sales efforts and cycles from any
of many different user systems. For example, if a salesperson
is visiting a customer and the customer has Internet access in
their lobby, the salesperson can obtain critical updates as to
that customer while waiting for the customer to arrive in the
lobby.

While each user’s data might be separate from other users’
data regardless of the employers of each user, some data
might be organization-wide data shared or accessible by a
plurality of users or all of the users for a given organization
that is a tenant. Thus, there might be some data structures
managed by system 16 that are allocated at the tenant level
while other data structures might be managed at the user level.
Because an MTS might support multiple tenants including
possible competitors, the MTS should have security protocols
that keep data, applications, and application use separate.
Also, because many tenants may opt for access to an MTS
rather than maintain their own system, redundancy, up-time,
and backup are additional functions that may be implemented
in the MTS. In addition to user-specific data and tenant-

10

15

20

25

30

35

40

45

55

60

65

16

specific data, system 16 might also maintain system level data
usable by multiple tenants or other data. Such system level
data might include industry reports, news, postings, and the
like that are sharable among tenants.

In certain implementations, user systems 12 (which may be
client systems) communicate with application servers 100 to
request and update system-level and tenant-level data from
system 16 that may involve sending one or more queries to
tenant data storage 22 and/or system data storage 24. System
16 (e.g., an application server 100 in system 16) automati-
cally generates one or more SQL statements (e.g., one or
more SQL queries) that are designed to access the desired
information. System data storage 24 may generate query
plans to access the requested data from the database.

Each database can generally be viewed as a collection of
objects, such as a set of logical tables, containing data fitted
into predefined categories. A “table” is one representation of
a data object, and may be used herein to simplify the concep-
tual description of objects and custom objects according to
some implementations. It should be understood that “table”
and “object” may be used interchangeably herein. Each table
generally contains one or more data categories logically
arranged as columns or fields in a viewable schema. Each row
or record of a table contains an instance of data for each
category defined by the fields. For example, a CRM database
may include a table that describes a customer with fields for
basic contact information such as name, address, phone num-
ber, fax number, etc. Another table might describe a purchase
order, including fields for information such as customer,
product, sale price, date, etc. In some multi-tenant database
systems, standard entity tables might be provided for use by
all tenants. For CRM database applications, such standard
entities might include tables for case, account, contact, lead,
and opportunity data objects, each containing pre-defined
fields. It should be understood that the word “entity” may also
be used interchangeably herein with “object” and “table”.

In some multi-tenant database systems, tenants may be
allowed to create and store custom objects, or they may be
allowed to customize standard entities or objects, for example
by creating custom fields for standard objects, including cus-
tom index fields. Commonly assigned U.S. Pat. No. 7,779,
039, titled CUSTOM ENTITIES AND FIELDS IN A
MULTI-TENANT DATABASE SYSTEM, by Weissman et
al., issued on Aug. 17, 2010, and hereby incorporated by
reference in its entirety and for all purposes, teaches systems
and methods for creating custom objects as well as custom-
izing standard objects in a multi-tenant database system. In
certain implementations, for example, all custom entity data
rows are stored in a single multi-tenant physical table, which
may contain multiple logical tables per organization. It is
transparent to customers that their multiple “tables” are in fact
stored in one large table or that their data may be stored in the
same table as the data of other customers.

FIG. 2A shows a system diagram illustrating an example of
architectural components of an on-demand database service
environment 200 according to some implementations. A cli-
ent machine located in the cloud 204, generally referring to
one or more networks in combination, as described herein,
may communicate with the on-demand database service envi-
ronment via one or more edge routers 208 and 212. A client
machine can be any of the examples of user systems 12
described above. The edge routers may communicate with
one or more core switches 220 and 224 via firewall 216. The
core switches may communicate with a load balancer 228,
which may distribute server load over different pods, such as
the pods 240 and 244. The pods 240 and 244, which may each
include one or more servers and/or other computing

US 9,075,766 B2

17

resources, may perform data processing and other operations
used to provide on-demand services. Communication with
the pods may be conducted via pod switches 232 and 236.
Components of the on-demand database service environment
may communicate with a database storage 256 via a database
firewall 248 and a database switch 252.

As shown in FIGS. 2A and 2B, accessing an on-demand
database service environment may involve communications
transmitted among a variety of different hardware and/or
software components. Further, the on-demand database ser-
vice environment 200 is a simplified representation of an
actual on-demand database service environment. For
example, while only one or two devices of each type are
shown in FIGS. 2A and 2B, some implementations of an
on-demand database service environment may include any-
where from one to many devices of each type. Also, the
on-demand database service environment need not include
each device shown in FIGS. 2A and 2B, or may include
additional devices not shown in FIGS. 2A and 2B.

Moreover, one or more of the devices in the on-demand
database service environment 200 may be implemented on
the same physical device or on different hardware. Some
devices may be implemented using hardware or a combina-
tion of hardware and software. Thus, terms such as “data
processing apparatus,” “machine,” “server” and “device” as
used herein are not limited to a single hardware device, but
rather include any hardware and software configured to pro-
vide the described functionality.

The cloud 204 is intended to refer to a data network or
plurality of data networks, often including the Internet. Client
machines located in the cloud 204 may communicate with the
on-demand database service environment to access services
provided by the on-demand database service environment.
For example, client machines may access the on-demand
database service environment to retrieve, store, edit, and/or
process information.

In some implementations, the edge routers 208 and 212
route packets between the cloud 204 and other components of
the on-demand database service environment 200. The edge
routers 208 and 212 may employ the Border Gateway Proto-
col (BGP). The BGP is the core routing protocol of the Inter-
net. The edge routers 208 and 212 may maintain a table of IP
networks or ‘prefixes’, which designate network reachability
among autonomous systems on the Internet.

In one or more implementations, the firewall 216 may
protect the inner components of the on-demand database
service environment 200 from Internet traffic. The firewall
216 may block, permit, or deny access to the inner compo-
nents of the on-demand database service environment 200
based upon a set of rules and other criteria. The firewall 216
may act as one or more of a packet filter, an application
gateway, a stateful filter, a proxy server, or any other type of
firewall.

In some implementations, the core switches 220 and 224
are high-capacity switches that transfer packets within the
on-demand database service environment 200. The core
switches 220 and 224 may be configured as network bridges
that quickly route data between different components within
the on-demand database service environment. In some imple-
mentations, the use of two or more core switches 220 and 224
may provide redundancy and/or reduced latency.

In some implementations, the pods 240 and 244 may per-
form the core data processing and service functions provided
by the on-demand database service environment. Each pod
may include various types of hardware and/or software com-
puting resources. An example of the pod architecture is dis-
cussed in greater detail with reference to FIG. 2B.

29 <

10

15

20

25

30

35

40

45

50

55

60

65

18

In some implementations, communication between the
pods 240 and 244 may be conducted via the pod switches 232
and 236. The pod switches 232 and 236 may facilitate com-
munication between the pods 240 and 244 and client
machines located in the cloud 204, for example via core
switches 220 and 224. Also, the pod switches 232 and 236
may facilitate communication between the pods 240 and 244
and the database storage 256.

In some implementations, the load balancer 228 may dis-
tribute workload between the pods 240 and 244. Balancing
the on-demand service requests between the pods may assist
in improving the use of resources, increasing throughput,
reducing response times, and/or reducing overhead. The load
balancer 228 may include multilayer switches to analyze and
forward traffic.

In some implementations, access to the database storage
256 may be guarded by a database firewall 248. The database
firewall 248 may act as a computer application firewall oper-
ating at the database application layer of a protocol stack. The
database firewall 248 may protect the database storage 256
from application attacks such as structure query language
(SQL) injection, database rootkits, and unauthorized infor-
mation disclosure.

In some implementations, the database firewall 248 may
include a host using one or more forms of reverse proxy
services to proxy traffic before passing it to a gateway router.
The database firewall 248 may inspect the contents of data-
base traffic and block certain content or database requests.
The database firewall 248 may work on the SQL application
level atop the TCP/IP stack, managing applications’ connec-
tion to the database or SQL management interfaces as well as
intercepting and enforcing packets traveling to or from a
database network or application interface.

In some implementations, communication with the data-
base storage 256 may be conducted via the database switch
252. The multi-tenant database storage 256 may include more
than one hardware and/or software components for handling
database queries. Accordingly, the database switch 252 may
direct database queries transmitted by other components of
the on-demand database service environment (e.g., the pods
240 and 244) to the correct components within the database
storage 256.

In some implementations, the database storage 256 is an
on-demand database system shared by many different orga-
nizations. The on-demand database system may employ a
multi-tenant approach, a virtualized approach, or any other
type of database approach. An on-demand database system is
discussed in greater detail with reference to FIGS. 1A and 1B.

FIG. 2B shows a system diagram further illustrating an
example of architectural components of an on-demand data-
base service environment according to some implementa-
tions. The pod 244 may be used to render services to a user of
the on-demand database service environment 200. In some
implementations, each pod may include a variety of servers
and/or other systems. The pod 244 includes one or more
content batch servers 264, content search servers 268, query
servers 282, file force servers 286, access control system
(ACS) servers 280, batch servers 284, and app servers 288.
Also, the pod 244 includes database instances 290, quick file
systems (QFS) 292, and indexers 294. In one or more imple-
mentations, some or all communication between the servers
in the pod 244 may be transmitted via the switch 236.

In some implementations, the app servers 288 may include
a hardware and/or software framework dedicated to the
execution of procedures (e.g., programs, routines, scripts) for
supporting the construction of applications provided by the
on-demand database service environment 200 via the pod

US 9,075,766 B2

19

244. In some implementations, the hardware and/or software
framework of an app server 288 is configured to execute
operations of the services described herein, including perfor-
mance of the blocks of methods described with reference to
FIGS.15-21. In alternative implementations, two or more app
servers 288 may be included and cooperate to perform such
methods, or one or more other servers described herein can be
configured to perform the disclosed methods.

The content batch servers 264 may handle requests internal
to the pod. These requests may be long-running and/or not
tied to a particular customer. For example, the content batch
servers 264 may handle requests related to log mining,
cleanup work, and maintenance tasks.

The content search servers 268 may provide query and
indexer functions. For example, the functions provided by the
content search servers 268 may allow users to search through
content stored in the on-demand database service environ-
ment.

The file force servers 286 may manage requests for infor-
mation stored in the Fileforce storage 298. The Fileforce
storage 298 may store information such as documents,
images, and basic large objects (BLOBs). By managing
requests for information using the file force servers 286, the
image footprint on the database may be reduced.

The query servers 282 may be used to retrieve information
from one or more file systems. For example, the query system
282 may receive requests for information from the app serv-
ers 288 and then transmit information queries to the NFS 296
located outside the pod.

The pod 244 may share a database instance 290 configured
as a multi-tenant environment in which different organiza-
tions share access to the same database. Additionally, services
rendered by the pod 244 may call upon various hardware
and/or software resources. In some implementations, the ACS
servers 280 may control access to data, hardware resources,
or software resources.

In some implementations, the batch servers 284 may pro-
cess batch jobs, which are used to run tasks at specified times.
Thus, the batch servers 284 may transmit instructions to other
servers, such as the app servers 288, to trigger the batch jobs.

In some implementations, the QFS 292 may be an open
source file system available from Sun Microsystems® of
Santa Clara, Calif. The QFS may serve as a rapid-access file
system for storing and accessing information available within
the pod 244. The QFS 292 may support some volume man-
agement capabilities, allowing many disks to be grouped
together into a file system. File system metadata can be kept
on a separate set of disks, which may be useful for streaming
applications where long disk seeks cannot be tolerated. Thus,
the QFS system may communicate with one or more content
search servers 268 and/or indexers 294 to identify, retrieve,
move, and/or update data stored in the network file systems
296 and/or other storage systems.

In some implementations, one or more query servers 282
may communicate with the NFS 296 to retrieve and/or update
information stored outside of the pod 244. The NFS 296 may
allow servers located in the pod 244 to access information to
access files over a network in a manner similar to how local
storage is accessed.

In some implementations, queries from the query servers
222 may be transmitted to the NFS 296 via the load balancer
228, which may distribute resource requests over various
resources available in the on-demand database service envi-
ronment. The NFS 296 may also communicate with the QFS
292 to update the information stored on the NFS 296 and/or to
provide information to the QFS 292 foruse by servers located
within the pod 244.

10

15

20

25

30

35

40

45

50

55

60

65

20

In some implementations, the pod may include one or more
database instances 290. The database instance 290 may trans-
mit information to the QFS 292. When information is trans-
mitted to the QFS, it may be available for use by servers
within the pod 244 without using an additional database call.

In some implementations, database information may be
transmitted to the indexer 294. Indexer 294 may provide an
index of information available in the database 290 and/or
QFS 292. The index information may be provided to file force
servers 286 and/or the QFS 292.

III. Tracking Updates to a Record Stored in a Database

As multiple users might be able to change the data of a
record, it can be useful for certain users to be notified when a
record is updated. Also, even if a user does not have authority
to change a record, the user still might want to know when
there is an update to the record. For example, a vendor may
negotiate a new price with a salesperson of company X, where
the salesperson is a user associated with tenant Y. As part of
creating a new invoice or for accounting purposes, the sales-
person can change the price saved in the database. It may be
important for co-workers to know that the price has changed.
The salesperson could send an email to certain people, but this
is onerous and the salesperson might not email all of the
people who need to know or want to know. Accordingly, some
implementations of the disclosed techniques can inform oth-
ers (e.g., co-workers) who want to know about an update to a
record automatically.

FIG. 3 shows a flowchart of an example of a method 300 for
tracking updates to a record stored in a database system,
performed in accordance with some implementations.
Method 300 (and other methods described herein) may be
implemented at least partially with multi-tenant database sys-
tem 16, e.g., by one or more processors configured to receive
orretrieve information, process the information, store results,
and transmit the results. In other implementations, method
300 may be implemented at least partially with a single tenant
database system. In various implementations, blocks may be
omitted, combined, or split into additional blocks for method
300, as well as for other methods described herein.

In block 310, the database system receives a request to
update a first record. In one implementation, the request is
received from a first user. For example, a user may be access-
ing a page associated with the first record, and may change a
displayed field and hit save. In another implementation, the
database system can automatically create the request. For
instance, the database system can create the request in
response to another event, e.g., a request to change a field
could be sent periodically at a particular date and/or time of
day, or a change to another field or object. The database
system can obtain a new value based on other fields of a
record and/or based on parameters in the system.

The request for the update of a field of a record is an
example of an event associated with the first record for which
a feed tracked update may be created. In other implementa-
tions, the database system can identify other events besides
updates to fields of a record. For example, an event can be a
submission of approval to change a field. Such an event can
also have an associated field (e.g., a field showing a status of
whether a change has been submitted). Other examples of
events can include creation of a record, deletion of a record,
converting a record from one type to another (e.g., converting
a lead to an opportunity), closing a record (e.g., a case type
record), and potentially any other state change of a record—
any of which could include a field change associated with the
state change. Any of these events update the record whether
by changing a field of the record, a state of the record, or some
other characteristic or property of the record. In one imple-

US 9,075,766 B2

21

mentation, a list of supported events for creating a feed
tracked update can be maintained within the database system,
e.g., at a server or in a database.

In block 320, the database system writes new data to the
first record. In one implementation, the new data may include
a new value that replaces old data. For example, a field is
updated with a new value. In another implementation, the new
data can be a value for a field that did not contain data before.
In yet another implementation, the new data could be a flag,
e.g., for a status of the record, which can be stored as a field of
the record.

In some implementations, a “field” can also include
records, which are child objects of the first record in a parent-
child hierarchy. A field can alternatively include a pointerto a
child record. A child object itself can include further fields.
Thus, if a field of a child object is updated with a new value,
the parent record also can be considered to have a field
changed. In one example, a field could be a list of related child
objects, also called a related list.

In block 330, a feed tracked update is generated about the
update to the record. In one implementation, the feed tracked
update is created in parts for assembling later into a display
version. For example, event entries can be created and tracked
in a first table, and changed field entries can be tracked in
another table that is cross-referenced with the first table. More
specifics of such implementations are provided later, e.g.,
with respect to FIG. 9A. In another implementation, the feed
tracked update is automatically generated by the database
system. The feed tracked update can convey in words that the
first record has been updated and provide details about what
was updated in the record and who performed the update. In
some implementations, a feed tracked update is generated for
only certain types of event and/or updates associated with the
first record.

In one implementation, a tenant (e.g., through an adminis-
trator) can configure the database system to create (enable)
feed tracked updates only for certain types of records. For
example, an administrator can specify that records of desig-
nated types such as accounts and opportunities are enabled.
When an update (or other event) is received for the enabled
record type, then a feed tracked update would be generated. In
another implementation, a tenant can also specify the fields of
a record whose changes are to be tracked, and for which feed
tracked updates are created. In one aspect, a maximum num-
ber of fields can be specified for tracking, and may include
custom fields. In one implementation, the type of change can
also be specified, for example, that the value change of a field
is to be larger than a threshold (e.g., an absolute amount or a
percentage change). In yet another implementation, a tenant
can specify which events are to cause a generation of a feed
tracked update. Also, in one implementation, individual users
can specify configurations specific to them, which can create
custom feeds as described in more detail below.

In one implementation, changes to fields of a child object
are not tracked to create feed tracked updates for the parent
record. In another implementation, the changes to fields of a
child object can be tracked to create feed tracked updates for
the parent record. For example, a child object of the parent
type can be specified for tracking, and certain fields of the
child object can be specified for tracking. As another
example, ifthe child object is of a type specified for tracking,
then a tracked change for the child object is propagated to
parent records of the child object.

Inblock 340, the feed tracked update is added to a feed for
the first record. In one implementation, adding the feed
tracked update to a feed can include adding events to a table
(which may be specific to a record or be for all or a group of

25

40

45

50

22

objects), where a display version of a feed tracked update can
be generated dynamically and presented in a GUI as a feed
item when a user requests a feed for the first record. In another
implementation, a display version of a feed tracked update
can be added when a record feed is stored and maintained for
a record. As mentioned above, a feed may be maintained for
only certain records. In one implementation, the feed of a
record can be stored in the database associated with the
record. For example, the feed can be stored as a field (e.g., as
achild object) of the record. Such a field can store a pointer to
the text to be displayed for the feed tracked update.

In some implementations, only the current feed tracked
update (or other current feed item) may be kept or temporarily
stored, e.g., in some temporary memory structure. For
example, a feed tracked update for only a most recent change
to any particular field is kept. In other implementations, many
previous feed tracked updates may be kept in the feed. A time
and/or date for each feed tracked update can be tracked.
Herein, a feed of a record is also referred to as an entity feed,
as a record is an instance of a particular entity object of the
database.

In block 350, followers of the first record can be identified.
A follower is a user following the first record, such as a
subscriber to the feed of the first record. In one implementa-
tion, when a user requests a feed of a particular record, such
an identification of block 350 can be omitted. In another
implementation where a record feed is pushed to a user (e.g.,
as part of a news feed), then the user can be identified as a
follower of the first record. Accordingly, this block can
include the identification of records and other objects being
followed by a particular user.

In one implementation, the database system can store a list
of'the followers for a particular record. In various implemen-
tations, the list can be stored with the first record or associated
with the record using an identifier (e.g., a pointer) to retrieve
the list. For example, the list can be stored in a field of the first
record. In another implementation, a list of the records that a
user is following is used. In one implementation, the database
system can have a routine that runs for each user, where the
routine polls the records in the list to determine if a new feed
tracked update has been added to a feed of the record. In
another implementation, the routine for the user can be run-
ning at least partially on a user device, which contacts the
database to perform the polling.

In block 360, in one implementation, the feed tracked
update can be stored in a table, as described in greater detail
below. When the user opens a feed, an appropriate query is
sent to one or more tables to retrieve updates to records, also
described in greater detail below. In some implementations,
the feed shows feed tracked updates in reverse chronological
order. In one implementation, the feed tracked update is
pushed to the feed of a user, e.g., by a routine that determines
the followers for the record from a list associated with the
record. In another implementation, the feed tracked update is
pulled to a feed, e.g., by auser device. This pulling may occur
when a user requests the feed, as occurs in block 370. Thus,
these actions may occur in a different order. The creation of
the feed for a pull may be a dynamic creation that identifies
records being followed by the requesting user, generates the
display version of relevant feed tracked updates from stored
information (e.g., event and field change), and adds the feed
tracked updates into the feed. A feed of feed tracked updates
of records and other objects that a user is following is also
generally referred to herein as a news feed, which can be a
subset of a larger information feed in which other types of
information updates appear, such as posts.

US 9,075,766 B2

23

In yet another implementation, the feed tracked update
could be sent as an email to the follower, instead of in a feed.
In one implementation, email alerts for events can enable
people to be emailed when certain events occur. In another
implementation, emails can be sent when there are posts on a
user profile and posts on entities to which the user subscribes.
In one implementation, a user can turn on/off email alerts for
all or some events. In an implementation, a user can specify
what kind of feed tracked updates to receive about a record
that the user is following. For example, a user can choose to
only receive feed tracked updates about certain fields of a
record that the user is following, and potentially about what
kind of update was performed (e.g., a new value input into a
specified field, or the creation of a new field).

Inblock 370, a follower can access his/her news feed to see
the feed tracked update. In one implementation, the user has
just one news feed for all of the records that the user is
following. In one aspect, a user can access his/her feed by
selecting a particular tab or other object on a page of an
interface to the database system. Once selected the feed can
be provided as a list, e.g., with an identifier (e.g., a time) or
including some or all of the text of the feed tracked update. In
another implementation, the user can specify how the feed
tracked updates are to be displayed and/or sent to the user. For
example, a user can specify a font for the text, a location of
where the feed can be selected and displayed, amount of text
to be displayed, and other text or symbols to be displayed
(e.g., importance flags).

FIG. 4 shows a block diagram of an example of compo-
nents of a database system configuration 400 performing a
method for tracking an update to a record according to some
implementations. Database system configuration 400 can
perform implementations of method 300, as well as imple-
mentations of other methods described herein.

A first user 405 sends a request 1 to update record 425 in
database system 416. Although an update request is
described, other events that are being tracked are equally
applicable. In various implementations, the request 1 can be
sent via a user interface (e.g., 30 of FIG. 1B) or an application
program interface (e.g., AP132). An I/O port 420 can accom-
modate the signals of request 1 via any input interface, and
send the signals to one or more processors 417. The processor
417 can analyze the request and determine operations to be
performed. Herein, any reference to a processor 417 can refer
to a specific processor or any set of processors in database
system 416, which canbe collectively referred to as processor
417.

Processor 417 can determine an identifier for record 425,
and send commands with the new data 2 of the request to
record database 412 to update record 425. In one implemen-
tation, record database 412 is where tenant storage space 112
of FIG. 1B is located. The request 1 and new data commands
2 can be encapsulated in a single write transaction sent to
record database 412. In one implementation, multiple
changes to records in the database can be made in a single
write transaction.

Processor 417 can also analyze request 1 to determine
whether a feed tracked update is to be created, which at this
point may include determining whether the event (e.g., a
change to a particular field) is to be tracked. This determina-
tion can be based on an interaction (i.e., an exchange of data)
with record database 412 and/or other databases, or based on
information stored locally (e.g., in cache or RAM) at proces-
sor 417. In one implementation, a list of record types that are
being tracked can be stored. The list may be different for each
tenant, e.g., as each tenant may configure the database system
to its own specifications. Thus, if the record 425 is of a type

10

15

20

25

30

35

40

45

50

55

60

65

24

not being tracked, then the determination of whether to create
a feed tracked update can stop there.

The same list or a second list (which can be stored in a same
location or a different location) can also include the fields
and/or events that are tracked for the record types in the first
list. This list can be searched to determine if the event is being
tracked. A list may also contain information having the granu-
larity of listing specific records that are to be tracked (e.g., if
a tenant can specify the particular records to be tracked, as
opposed to just type).

As an example, processor 417 may obtain an identifier
associated with record 425 (e.g., obtained from request 1 or
database 412), potentially along with a tenant identifier, and
cross-reference the identifier with a list of records for which
feed tracked updates are to be created. Specifically, the record
identifier can be used to determine the record type and a list of
tracked types can be searched for a match. The specific record
may also be checked if such individual record tracking was
enabled. The name of the field to be changed can also be used
to search a list of tracking-enabled fields. Other criteria
besides field and events can be used to determine whether a
feed tracked update is created, e.g., type of change in the field.
If a feed tracked update is to be generated, processor 417 can
then generate the feed tracked update.

In some implementations, a feed tracked update is created
dynamically when a feed (e.g., the entity feed of record 425)
is requested. Thus, in one implementation, a feed tracked
update can be created when a user requests the entity feed for
record 425. In this implementation, the feed tracked update
may be created (e.g., assembled), including re-created, each
time the entity feed is to be displayed to any user. In one
implementation, one or more event history tables can keep
track of previous events so that the feed tracked update can be
re-created.

In another implementation, a feed tracked update can be
created at the time the event occurs, and the feed tracked
update can be added to a list of feed items. The list of feed
items may be specific to record 425, or may be an aggregate
of feed items including feed items for many records. Such an
aggregate list can include a record identifier so that the feed
items for the entity feed of record 425 can be easily retrieved.
For example, after the feed tracked update has been gener-
ated, processor 417 can add the new feed tracked update 3 to
a feed of record 425. As mentioned above, in one implemen-
tation, the feed can be stored in a field (e.g., as a child object)
of record 425. In another implementation, the feed can be
stored in another location or in another database, but with a
link (e.g., a connecting identifier) to record 425. The feed can
be organized in various ways, e.g., as a linked list, an array, or
other data structure.

A second user 430 can access the new feed tracked update
3 in various ways. In one implementation, second user 430
can send a request 4 for the record feed. For example, second
user 430 can access a home page (detail page) of the record
425 (e.g., with a query or by browsing), and the feed can be
obtained through a tab, button, or other activation object on
the page. The feed can be displayed on the screen or down-
loaded.

In another implementation, processor 417 can add the new
feed tracked update 5 to a feed (e.g., anews feed) of a user that
is following record 425. In one implementation, processor
417 can determine each of the followers of record 425 by
accessing a list of the users that have been registered as
followers. This determination can be done for each new event
(e.g., update 1). In another implementation, processor 417
can poll (e.g., with a query) the records that second user 430
is following to determine when new feed tracked updates (or

US 9,075,766 B2

25

other feed items) are available. Processor 417 can use a fol-
lower profile 435 of second user 430 that can contain a list of
the records that the second user 430 is following. Such a list
can be contained in other parts of the database as well. Second
user 430 can then send a request 6 to his/her profile 435 to
obtain a feed, which contains the new feed tracked update.
The user’s profile 435 can be stored in a profile database 414,
which can be the same or different than database 412.

In some implementations, a user can define a news feed to
include new feed tracked updates from various records, which
may be limited to a maximum number. In one implementa-
tion, each user has one news feed. In another implementation,
the follower profile 435 can include the specifications of each
of the records to be followed (with the criteria for what feed
tracked updates are to be provided and how they are dis-
played), as well as the feed.

Some implementations can provide various types of record
(entity) feeds. Entity Feeds can exist for record types like
account, opportunity, case, and contact. An entity feed can tell
a user about the actions that people have taken on that par-
ticular record or on one its related records. The entity feed can
include who made the action, which field was changed, and
the old and new values. In one implementation, entity feeds
can exist on all supported records as a list that is linked to the
specific record. For example, a feed could be stored in a field
that allows lists (e.g., linked lists) or as a child object.

IV. Tracking Actions of a User

In addition to knowing about events associated with a
particular record, it can be helpful for a user to know what a
particular user is doing. In particular, it might be nice to know
what the user is doing without the user having to generate the
feed tracked update (e.g., a user submitting a synopsis of what
the user has done). Accordingly, implementations can auto-
matically track actions of a user that trigger events, and feed
tracked updates can be generated for certain events.

FIG. 5 shows a flowchart of an example of a method 500 for
tracking actions of a user of a database system, performed in
accordance with some implementations. Method 500 may be
performed in addition to method 300. The operations of
method 300, including order of blocks, can be performed in
conjunction with method 500 and other methods described
herein. Thus, a feed can be composed of changes to a record
and actions of users.

In block 510, a database system (e.g., 16 of FIGS. 1A and
1B) identifies an action of a first user. In one implementation,
the action triggers an event, and the event is identified. For
example, the action of a user requesting an update to a record
can be identified, where the event is receiving a request or is
the resulting update of a record. The action may thus be
defined by the resulting event. In another implementation,
only certain types of actions (events) are identified. Which
actions are identified can be set as a default or can be config-
urable by a tenant or even configurable at a user level. In this
way, processing effort can be reduced since only some actions
are identified.

In block 520, it is determined whether the event qualifies
for a feed tracked update. In one implementation, a predefined
list of events (e.g., as mentioned herein) can be created so that
only certain actions are identified. In one implementation, an
administrator (or other user) of a tenant can specity the type of
actions (events) for which a feed tracked update is to be
generated. This block may also be performed for method 300.

In block 530, a feed tracked update is generated about the
action. In an example where the action is an update of a
record, the feed tracked update can be similar or the same as
the feed tracked update created for the record. The description
can be altered though to focus on the user as opposed to the

25

30

35

40

45

50

55

26

record. For example, “John D. has closed a new opportunity
for account XYZ” as opposed to “an opportunity has been
closed for account XYZ.’

In block 540, the feed tracked update is added to a profile
feed of the first user when, e.g., the user clicks on a tab to open
a page in a browser program displaying the feed. In one
implementation, a feed for a particular user can be accessed
on a page of the user’s profile, in a similar manner as a record
feed can be accessed on a detail page of the record. In another
implementation, the first user may not have a profile feed and
the feed tracked update may just be stored temporarily before
proceeding. A profile feed of a user can be stored associated
with the user’s profile. This profile feed can be added to a
news feed of another user.

In block 550, followers of the first user are identified. In
one implementation, a user can specify which type of actions
other users can follow. Similarly, in one implementation, a
follower can select what actions by a user the follower wants
to follow. In an implementation where different followers
follow different types of actions, which users are followers of
that user and the particular action can be identified, e.g., using
various lists that track what actions and criteria are being
followed by a particular user. In various implementations, the
followers of the first user can be identified in a similar manner
as followers of a record, as described above for block 350.

In block 560, the feed tracked update is added to a news
feed of each follower of the first user when, e.g., the follower
clicks on a tab to open a page displaying the news feed. The
feed tracked update can be added in a similar manner as the
feed items for a record feed. The news feed can contain feed
tracked updates both about users and records. In another
implementation, a user can specify what kind of feed tracked
updates to receive about a user that the user is following. For
example, a user could specify feed tracked updates with par-
ticular keywords, of certain types of records, of records
owned or created by certain users, particular fields, and other
criteria as mentioned herein.

Inblock 570, a follower accesses the news feed and sees the
feed tracked update. In one implementation, the user has just
one news feed for all of the records that the user is following.
In another implementation, a user can access his/her own feed
(i.e. feed about his’her own actions) by selecting a particular
tab or other object on a page of an interface to the database
system. Thus, a feed can include feed tracked updates about
what other users are doing in the database system. When a
user becomes aware of a relevant action of another user, the
user can contact the co-worker, thereby fostering teamwork.

V. Generation of a Feed Tracked Update

As described above, some implementations can generate
text describing events (e.g., updates) that have occurred for a
record and actions by a user that trigger an event. A database
system can be configured to generate the feed tracked updates
for various events in various ways.

In one implementation, the feed tracked update is a gram-
matical sentence, thereby being easily understandable by a
person. In another implementation, the feed tracked update
provides detailed information about the update. In various
examples, an old value and new value for a field may be
included in the feed tracked update, an action for the update
may be provided (e.g., submitted for approval), and the names
of particular users that are responsible for replying or acting
on the feed tracked update may be also provided. The feed
tracked update can also have a level of importance based on
settings chosen by the administrator, a particular user request-
ing an update, or by a following user who is to receive the feed

US 9,075,766 B2

27

tracked update, which fields is updated, a percentage of the
change in a field, the type of event, or any combination of
these factors.

The system may have a set of heuristics for creating a feed
tracked update from the event (e.g., a request to update). For
example, the subject may be the user, the record, or a field
being added or changed. The verb can be based on the action
requested by the user, which can be selected from a list of
verbs (which may be provided as defaults or input by an
administrator of a tenant). In one implementation, feed
tracked updates can be generic containers with formatting
restrictions,

As an example of a feed tracked update for a creation of a
new record, “Mark Abramowitz created a new Opportunity
for IBM-20,000 laptops with Amount as $3.5M and Sam
Palmisano as Decision Maker.” This event can be posted to
the profile feed for Mark Abramowitz and the entity feed for
record of Opportunity for IBM-20,000 laptops. The pattern
can be given by (AgentFullName) created a new (Object-
Name)(RecordName) with [(FieldName) as (FieldValue)
[,/and]]*[[added/changed/removed] (RelatedListRecord-
Name) [as/to/as] (RelatedListRecordValue) [,/and]]*. Simi-
lar patterns can be formed for a changed field (standard or
custom) and an added child record to a related list.

V1. Tracking Commentary from or about a User

Some implementations can also have a user submit text,
instead of the database system generating a feed tracked
update. As the text is submitted as part or all of a message by
auser, the text can be about any topic. Thus, more information
than just actions of a user and events of a record can be
conveyed. In one implementation, the messages can be used
to ask a question about a particular record, and users follow-
ing the record can provide comments and responses.

FIG. 6 shows a flowchart of an example of a method 600 for
creating a news feed from messages created by a user about a
record or another user, performed in accordance with some
implementations. In one implementation, method 600 can be
combined with methods 300 and 500. In one aspect, a mes-
sage can be associated with the first user when the first user
creates the message (e.g., a post or comment about a record or
another user). In another aspect, a message can be associated
with the first user when the message is about the first user
(e.g., posted by another user on the first user’s profile feed).

Inblock 610, the database system receives a message (e.g.,
a post or status update) associated with a first user. The mes-
sage (e.g., a post or status update) can contain text and/or
multimedia content submitted by another user or by the first
user. In one implementation, a post is for a section of the first
user’s profile page where any user can add a post, and where
multiple posts can exist. Thus, a post can appear on the first
user’s profile page and can be viewed when the first user’s
profile is visited. For a message about a record, the post can
appear on a detail page of a record. Note the message can
appear in other feeds as well. In another implementation, a
status update about the first user can only be added by the first
user. In one implementation, a user can only have one status
message.

In block 620, the message is added to a table, as described
in greater detail below. When the feed is opened, a query
filters one or more tables to identify the first user, identify
other persons that the user is following, and retrieve the
message. Messages and record updates are presented in a
combined list as the feed. In this way, in one implementation,
the message can be added to a profile feed of the first user,
which is associated (e.g., as a related list) with the first user’s
profile. In one implementation, the posts are listed indefi-
nitely. In another implementation, only the most recent posts

25

30

40

45

55

28

(e.g., last 50) are kept in the profile feed. Such implementa-
tions can also be employed with feed tracked updates. In yet
another implementation, the message can be added to a pro-
file of the user adding the message.

In block 630, the database system identifies followers of
the first user. In one implementation, the database system can
identify the followers as described above for method 500. In
various implementations, a follower can select to follow a
feed about the actions of the first user, messages about the first
user, or both (potentially in a same feed).

In block 640, the message is added to a news feed of each
follower. In one implementation, the message is only added to
a news feed of a particular follower if the message matches
some criteria, e.g., the message includes a particular keyword
orother criteria. In another implementation, a message can be
deleted by the user who created the message. In one imple-
mentation, once deleted by the author, the message is deleted
from all feeds to which the message had been added.

Inblock 650, the follower accesses a news feed and sees the
message. For example, the follower can access a news feed on
the follower’s own profile page. As another example, the
follower can have a news feed sent to his’her own desktop
without having to first go to a home page.

In block 660, the database system receives a comment
about the message. The database system can add the comment
to a feed of the same first user, much as the original message
was added. In one implementation, the comment can also be
added to a feed of a second user who added the comment. In
one implementation, users can also reply to the comment. In
another implementation, users can add comments to a feed
tracked update, and further comments can be associated with
the feed tracked update. In yet another implementation, mak-
ing a comment or message is not an action to which a feed
tracked update is created. Thus, the message may be the only
feed item created from such an action.

In one implementation, if a feed tracked update or post is
deleted, its corresponding comments are deleted as well. In
another implementation, new comments on a feed tracked
update or post do not update the feed tracked update times-
tamp. Also, the feed tracked update or post can continue to be
shown in a feed (profile feed, record feed, or news feed) if it
has had a comment within a specified timeframe (e.g., within
the last week). Otherwise, the feed tracked update or post can
be removed in an implementation.

In some implementations, all or most feed tracked updates
can be commented on. In other implementations, feed tracked
updates for certain records (e.g., cases or ideas) are not com-
mentable. In various implementations, comments can be
made for any one or more records of opportunities, accounts,
contacts, leads, and custom objects.

In block 670, the comment is added to a news feed of each
follower. In one implementation, a user can make the com-
ment within the user’s news feed. Such a comment can propa-
gate to the appropriate profile feed or record feed, and then to
the news feeds of the following users. Thus, feeds can include
what people are saying, as well as what they are doing. In one
aspect, feeds are a way to stay up-to-date (e.g., on users,
opportunities, etc.) as well as an opportunity to reach out to
co-workers/partners and engage them around common goals.

In some implementations, users can rate feed tracked
updates or messages (including comments). A user can
choose to prioritize a display of a feed so that higher rated
feed items show up higher on a display. For example, in an
implementation where comments are answers to a specific
question, users can rate the different status posts so thata best
answer can be identified. As another example, users are able
to quickly identify feed items that are most important as those

US 9,075,766 B2

29

feed items can be displayed at a top of a list. The order of the
feed items can be based on an importance level (which can be
determined by the database system using various factors,
some of which are mentioned herein) and based on a rating
from users. In one implementation, the rating is on a scale that
includes at least 3 values. In another implementation, the
rating is based on a binary scale.

Besides a profile for a user, a group can also be created. In
various implementations, the group can be created based on
certain attributes that are common to the users, can be created
by inviting users, and/or can be created by receiving requests
to join from a user. In one implementation, a group feed can
be created, with messages being added to the group feed when
someone submits a message to the group as a whole through
a suitable user interface. For example, a group page may have
a group feed or a section within the feed for posts, and a user
can submit a post through a publisher component in the user
interface by clicking on a “Share” or similar button. In
another implementation, a message can be added to a group
feed when the message is submitted about any one of the
members. Also, agroup feed can include feed tracked updates
about actions of the group as a whole (e.g., when an admin-
istrator changes data in a group profile or a record owned by
the group), or about actions of an individual member.

FIG. 7 shows an example of a group feed on a group page
according to some implementations. As shown, a feed item
710 shows that a user has posted a document to the group
object. The text “Bill Bauer has posted the document Com-
petitive Insights” can be generated by the database system in
a similar manner as feed tracked updates about a record being
changed. A feed item 720 shows a post to the group, along
with comments 730 from Ella Johnson, James Saxon, Mary
Moore and Bill Bauer.

FIG. 8 shows an example of a record feed containing a feed
tracked update, post, and comments according to some imple-
mentations. Feed item 810 shows a feed tracked update based
on the event of submitting a discount for approval. Other feed
items show posts, e.g., from Bill Bauer, that are made to the
record and comments, e.g., from Erica Law and Jake Rapp,
that are made on the posts.

VII. Infrastructure for a Feed

A. Tables Used to Create a Feed

FIG. 9A shows an example of a plurality of feed tracked
update tables that may be used in tracking events and creating
feeds according to some implementations. The tables of FIG.
9 A may have entries added, or potentially removed, as part of
tracking events in the database from which feed items are
creates or that correspond to feed items. In one implementa-
tion, each tenant has its own set of tables that are created
based on criteria provided by the tenant.

An event history table 910 can provide a feed tracked
update of events from which feed items are created. In one
aspect, the events are for objects that are being tracked. Thus,
table 910 can store and change feed tracked updates for feeds,
and the changes can be persisted. In various implementations,
event history table 910 can have columns of event 1D 911,
object ID 912 (also called parent ID), and created by ID 913.
The event ID 911 can uniquely identify a particular event and
can start at 1 (or other number or value).

Each new event can be added chronologically with a new
event ID, which may be incremented in order. An object ID
912 can be used to track which record or user’s profile is being
changed. For example, the object ID can correspond to the
record whose field is being changed or the user whose feed is
receiving a post. The created by ID 913 can track the user who

10

15

20

25

30

35

40

45

50

55

60

65

30

is performing the action that results in the event, e.g., the user
that is changing the field or that is posting a message to the
profile of another user.

In one implementation, a name of an event can also be
stored in table 910. In one implementation, a tenant can
specify events that they want tracked. In an implementation,
event history table 910 can include the name of the field that
changed (e.g., old and new values). In another implementa-
tion, the name of the field, and the values, are stored in a
separate table. Other information about an event (e.g., text of
comment, feed tracked update, post or status update) can be
stored in event history table 910, or in other tables, as is now
described.

A field change table 920 can provide a feed tracked update
of the changes to the fields. The columns of table 920 can
include an event ID 921 (which correlates to the event ID
911), an old value 922 for the field, and the new value 923 for
the field. In one implementation, if an event changes more
than one field value, then there can be an entry for each field
changed. As shown, event ID 921 has two entries for event
E37.

A comment table 930 can provide a feed tracked update of
the comments made regarding an event, e.g., a comment on a
post or a change of a field value. The columns of table 930 can
include an event ID 921 (which correlates to the event ID
911), the comment column 932 that stores the text of the
comment, and the time/date 933 of the comment. In one
implementation, there can be multiple comments for each
event. As shown, event ID 921 has two entries for event E37.

A user subscription table 940 can provide a list of the
objects being followed (subscribed to) by a user. In one imple-
mentation, each entry has a user ID 941 of the user doing the
following and one object ID 942 corresponding to the object
being followed. In one implementation, the object being fol-
lowed can be a record or a user. As shown, the user with 1D
U819 is following object IDs 0615 and 0489. [fuser U819 is
following other objects, then additional entries may exist for
user U819. Also as shown, user U719 is also following object
0615. The user subscription table 940 can be updated when a
user adds or deletes an object that is being followed.

In one implementation, regarding a profile feed and a news
feed, these are read-only views on the event history table 910
specialized for these feed types. Conceptually the news feed
can be a semi-join between the user subscription table 940
and the event history table 910 on the object IDs 912 and 942
for the user. In one aspect, these entities can have polymor-
phic parents and can be subject to a number of restrictions
detailed herein, e.g., to limit the cost of sharing checks.

In one implementation, entity feeds are modeled in the API
as a feed associate entity (e.g., AccountFeed, CaseFeed, etc.).
A feed associate entity includes information composed of
events (e.g., event IDs) for only one particular record type.
Such a list can limit the query (and sharing checks) to a
specific record type. In one aspect, this structuring of the
entity feeds can make the query run faster. For example, a
request for a feed of a particular account can include the
record type of account. In one implementation, an account
feed table can then be searched, where the table has account
record IDs and corresponding event IDs or pointers to par-
ticular event entries in event history table 910. Since the
account feed table only contains some of the records (not all),
the query can run faster.

Inone implementation, there may be objects with no events
listed in the event history table 910, even though the record is
being tracked. In this case, the database service can return a
result indicating that no feed items exist.

US 9,075,766 B2

31

A feed item can represent an individual field change of a
record, creation and deletion of a record, or other events being
tracked for a record or auser. In one implementation, all of the
feed items in a single transaction (event) can be grouped
together and have the same event ID. A single transaction
relates to the operations that can be performed in a single
communication with the database. In another implementation
where a feed is an object of the database, a feed item can be a
child of a profile feed, news feed, or entity feed. If a feed item
is added to multiple feeds, the feed item can be replicated as
a child of each feed to which the feed item is added.

In some implementations, a comment exists as an item that
depends from feed tracked updates, posts, status updates, and
other items that are independent of each other. Thus, a feed
comment object can exist as a child object of a feed item
object. For example, comment table 930 can be considered a
child table of event history table 910. In one implementation,
a feed comment can be a child of a profile feed, news feed, or
entity feed that is separate from other feed items.

In one implementation, viewing a feed pulls up the most
recent messages or feed tracked updates (e.g., 25) and
searches the most recent (e.g., 4) comments for each feed
item. The comments can be identified via the comment table
930. In one implementation, a user can request to see more
comments, e.g., by selecting a see more link.

After feed items have been generated, they can be filtered
so that only certain feed items are displayed, which may be
tailored to a specific tenant and/or user. In one implementa-
tion, a user can specify changes to a field that meet certain
criteria for the feed item to show up in a feed displayed to the
user, e.g., a news feed or even an entity feed displayed directly
to the user. In one implementation, the criteria can be com-
bined with other factors (e.g., number of feed items in the
feed) to determine which feed items to display. For instance,
if a small number of feed items exist (e.g., below a threshold),
then all of the feed items may be displayed.

In one implementation, a user can specify the criteria via a
query on the feed items in his/her new feed, and thus a feed
may only return objects of a certain type, certain types of
events, feed tracked updates about certain fields, and other
criteria mentioned herein. Messages can also be filtered
according to some criteria, which may be specified in a query.
Such an added query can be added onto a standard query that
is used to create the news feed for a user. A first user could
specify the users and records that the first user is following in
this manner, as well as identify the specific feed items that the
first user wants to follow. The query could be created through
a graphical interface or added by a user directly in a query
language. Other criteria could include receiving only posts
directed to a particular user or record, as opposed to other feed
items.

In one implementation, a user can access a feed of a record
if the user can access the record. The security rules for deter-
mining whether a user has access to a record can be performed
in a variety of ways, some of which are described in com-
monly assigned U.S. Pat. No. 8,095,531, titted METHODS
AND SYSTEMS FOR CONTROLLING ACCESS TO CUS-
TOM OBJECTS IN A DATABASE, by Weissman et al.,
issued onJan. 10, 2012, and hereby incorporated by reference
in its entirety and for all purposes.

In one implementation, a user can edit a feed of a record if
the user has access to the record, e.g., deleting or editing a
feed item. In another implementation, a user (besides an
administrator) cannot edit a feed item, except for performing
an action from which a feed item can be created. In one
example, auser is first has to have access to a particular record
and field for a feed item to be created based on an action of the

25

30

35

40

45

60

32
user. In this case, an administrator can be considered to be a
user with MODIFY-ALL-DATA security level. In yet another
implementation, a user who created the record can edit the
feed.

Inone implementation, the text of posts are stored in a child
table (post table 950), which can be cross-referenced with
event history table 910. Post table 950 can include event ID
951 (to cross-reference with event ID 911), post text 952 to
store the text of the post, and time/date 953. An entry in post
table 950 can be considered a feed post object.

VIII. Subscribing to Users and Records to Follow

As described above, a user can follow users, groups, and
records. Implementations can provide mechanisms for a user
to manage which users, groups, and records that the user is
currently following. In one implementation, a user can be
limited to the number of users and records (collectively or
separately) that the user can follow. For example, a user may
be restricted to only following 10 users and 15 records, or as
another example, 25 total. Alternatively, the user may be
permitted to follow more or less users.

In one implementation, a user can go to a page of a record
and then select to follow that object (e.g., with a button
marked “follow” or “join”). In another implementation, a user
can search for a record and have the matching records show
up in a list. The search can include criteria of records that the
user might want to follow. Such criteria can include the
owner, the creation date, last comment date, and numerical
values of particular fields (e.g., an opportunity with a value of
more than $10,000).

A follow button (or other activation object) can then reside
next to each record in the resulting list, and the follow button
can be selected to start following the record. Similarly, a user
can go to a profile page of a user and select to follow the user,
or a search for users can provide a list, where one or more
users can be selected for following from the list. The selec-
tions of subscribing and unsubscribing can add and delete
rows in table 920.

In some implementations, a subscription center acts as a
centralized place in a database application (e.g., application
platform 18) to manage which records a user subscribes to,
and which field updates the user wants to see in feed tracked
updates. The subscription center can use a subscription table
to keep track of the subscriptions of various users. In one
implementation, the subscription center shows a list of all the
items (users and records) a user is subscribed to. In another
implementation, a user can unsubscribe to subscribed objects
from the subscription center.

A. Automatic Subscription

FIG. 9B shows a flowchart of an example of a method 900
for automatically subscribing a user to an object in a database
system, performed in accordance with some implementa-
tions. Any of the following blocks can be performed wholly or
partially with the database system, and in particular by one or
more processor of the database system.

In block 901, one or more properties of an object stored in
the database system are received. The properties can be
received from administrators of the database system, or from
users of the database system (which may be an administrator
of'a customer organization). The properties can be records or
users, and can include any of the fields of the object that are
stored in the database system. Examples of properties of a
record include: an owner of the record, a user that converted
the record from one record type to another record type,
whether the first user has viewed the record, and a time the
first user viewed the record. Examples of properties of a user
include: which organization (tenant) the user is associated

US 9,075,766 B2

33

with, the second user’s position in the same organization, and
which other users the user had emailed or worked with on
projects.

In block 902, the database system receives one or more
criteria about which users are to automatically follow the
object. Examples of the criteria can include: an owner or
creator of a record is to follow the record, subordinates of an
owner or creator of a record are to follow the record, and a
user is to follow his/her manager, the user’s peers, other users
in the same business group as the user, and other users that the
user has emailed or worked with on a project. The criteria can
be specific to a user or group of users (e.g., users of a tenant).

In block 903, the database system determines whether the
one or more properties of the object satisfy the one or more
criteria for a first user. In one implementation, this determi-
nation can occur by first obtaining the criteria and then deter-
mining objects that satisfy the criteria. The determination can
occur periodically, at time of creation of an object, or at other
times.

In block 904, if the criteria are satisfied, the object is
associated with the first user. The association can be in a list
that stores information as to what objects are being followed
by the first user. User subscription table 940 is an example of
such a list. In one implementation, the one or more criteria are
satisfied if one property satisfies at least one criterion. Thus, if
the criteria are that a user follows his’her manager and the
object is the user’s manager, then the first user will follow the
object.

In one implementation, a user can also be automatically
unsubscribed, e.g., if a certain action happens. The action
could be a change in the user’s position within the organiza-
tion, e.g., a demotion or becoming a contractor. As another
example, if a case gets closed, then users following the case
may be automatically unsubscribed.

IX. Adding Items to a Feed

As described above, a feed includes feed items, which
include feed tracked updates and messages, as defined herein.
Various feeds can be generated. For example, a feed can be
generated about a record or about a user. Then, users can view
these feeds. A user can separately view a feed of a record or
user, e.g., by going to a home page for the user or the record.
As described above, a user can also follow another user or
record and receive the feed items of those feeds through a
separate feed application. The feed application can provide
each of the feeds that a user is following and, in some
examples, can combine various feeds in a single information
feed.

A feed generator can refer to any software program running
on a processor or a dedicated processor (or combination
thereof) that can generate feed items (e.g., feed tracked
updates or messages) and combine them into a feed. In one
implementation, the feed generator can generate a feed item
by receiving a feed tracked update or message, identifying
what feeds the item should be added to, and adding the feed.
Adding the feed can include adding additional information
(metadata) to the feed tracked update or message (e.g., adding
a document, sender of message, a determined importance,
etc.). The feed generator can also check to make sure that no
one sees feed tracked updates for data that they don’t have
access to see (e.g., according to sharing rules). A feed gen-
erator can run at various times to pre-compute feeds or to
compute them dynamically, or combinations thereof.

In one implementation, processor 417 in FIG. 4 can iden-
tify an event that meets criteria for a feed tracked update, and
then generate the feed tracked update. Processor 417 can also
identify a message. For example, an application interface can
have certain mechanisms for submitting a message (e.g.,

10

15

20

25

30

35

40

45

50

55

60

65

34

“submit” buttons on a profile page, detail page of a record,
“comment” button on post), and use of these mechanisms can
be used to identity a message to be added to a table used to
create a feed or added directly to a list of feed items ready for
display.

A. Adding Items to a Pre-Computed Feed

In some implementations, a feed of feed items is created
before a user requests the feed. Such an implementation can
run fast, but have high overall costs for storage. In one imple-
mentation, once a profile feed or a record feed has been
created, a feed item (messages and feed tracked updates) can
be added to the feed. The feed can exist in the database system
in avariety of ways, such as arelated list. The feed can include
mechanisms to remove items as well as add them.

As described above, a news feed can be an aggregated feed
of all the record feeds and profile feeds to which a user has
subscribed. The news feed can be provided on the home page
of'the subscribing user. Therefore, a news feed can be created
by and exist for a particular user. For example, a user can
subscribe to receive entity feeds of certain records that are of
interest to the user, and to receive profile feeds of people that
are of interest (e.g., people on a same team, that work for the
user, are a boss of the user, etc.). A news feed can tell a user
about all the actions across all the records (and people) whom
have explicitly (or implicitly) been subscribed to via the sub-
scriptions center (described above).

In one implementation, only one instance of each feed
tracked update is shown on a user’s news feed, even if the feed
tracked update is published in multiple entities to which the
user is subscribed. In one aspect, there may be delays in
publishing news articles. For example, the delay may be due
to queued up messages for asynchronous entity feed tracked
update persistence. Different feeds may have different delays
(e.g., delay for new feeds, but none of profile and entity
feeds). In another implementation, certain feed tracked
updates regarding a subscribed profile feed or an entity feed
are not shown because the user is not allowed access, e.g., due
to sharing rules (which restrict which users can see which
data). Also, in one implementation, data of the record that has
beenupdated (which includes creation) can be provided in the
feed (e.g., a file or updated value of a feed can be added as a
flash rendition).

B. Dynamically Generating Feeds

Insome implementations, a feed generator can generate the
feed items dynamically when a user requests to see a particu-
lar feed, e.g., a profile feed, entity feed, or the user’s news
feed. In one implementation, the most recent feed items (e.g.,
top 50) are generated first. In one aspect, the other feed items
can be generated as a background process, e.g., not synchro-
nously with the request to view the feed. However, since the
background process is likely to complete before a user gets to
the next 50 feed items, the feed generation may appear syn-
chronous. In another aspect, the most recent feed items may
or may not include comments, e.g., that are tied to feed
tracked updates or posts.

In one implementation, the feed generator can query the
appropriate subset of tables shown in FIG. 9A and/or other
tables as necessary, to generate the feed items for display. For
example, the feed generator can query the event history table
910 for the updates that occurred for a particular record. The
ID of the particular record can be matched against the ID of
the record. In one implementation, changes to a whole set of
records can be stored in one table. The feed generator can also
query for status updates, posts, and comments, each of which
can be stored in different parts of a record or in separate
tables, as shown in FIG. 9A. What gets recorded in the entity
event history table (as well as what is displayed) can be

US 9,075,766 B2

35

controlled by a feed settings page in setup, which can be
configurable by an administrator and can be the same for the
entire organization, as is described above for custom feeds.

In one implementation, there can be two feed generators.
For example, one generator can generate the record and pro-
file feeds and another generator can generate news feeds. For
the former, the feed generator can query identifiers of the
record or the user profile. For the latter, the news feed gen-
erator can query the subscribed profile feeds and record feeds,
e.g., user subscription table 940. In one implementation, the
feed generator looks at a person’s subscription center to
decide which feeds to query for and return a list of feed items
for the user. The list can be de-duped, e.g., by looking at the
event number and values for the respective table, such as field
name or ID, comment ID, or other information.

C. Adding Information to Feed Tracked Update Tables

FIG. 10 shows a flowchart of an example of a method 1000
for saving information to feed tracking tables, performed in
accordance with some implementations. In one implementa-
tion, some of the blocks may be performed regardless of
whether a specific event or part of an event (e.g., only one field
of an update is being tracked) is being tracked. In various
implementations, a processor or set of processors (hardwired
or programmed) can perform method 1000 and any other
method described herein.

In block 1010, data indicative of an event is received. The
data may have a particular identifier that specifies the event.
For example, there may be a particular identifier for a field
update. In another implementation, the transaction may be
investigated for keywords identifying the event (e.g., terms in
a query indicating a close, change field, or create operations).

In block 1020, it is determined whether the event is being
tracked for inclusion into feed tracked update tables. The
determination of what is being tracked can be based on a
tenant’s configuration as described above. In one aspect, the
event has an actor (person performing an event), and an object
of the event (e.g., record or user profile being changed).

Inblock 1030, the event is written to an event history table
(e.g., table 910). In one implementation, this feed tracking
operation can be performed in the same transaction that per-
forms a save operation for updating a record. In another
implementation, a transaction includes at least two roundtrip
database operations, with one roundtrip being the database
save (write), and the second database operation being the
saving of the update in the feed tracked update table. In one
implementation, the event history table is chronological. In
another implementation, if user A posts on user B’s profile,
then user A is under the “created by 913 and user B is under
the object ID 912.

In block 1040, a field change table (e.g., field change table
920) can be updated with an entry having the event identifier
and fields that were changed in the update. In one implemen-
tation, the field change table is a child table of the event
history table. This table can include information about each of
the fields that are changed. For example, for an event that
changes the name and balance for an account record, an entry
can have the event identifier, the old and new name, and the
old and new balance. Alternatively, each field change can be
in a different row with the same event identifier. The field
name or ID can also be included to determine which field the
values are associated.

In block 1050, when the event is a post, a post table (e.g.,
post table 950) can be updated with an entry having the event
identifier and text of the post. In one implementation, the field
change table is a child table of the event history table. In
another implementation, the text can be identified in the trans-
action (e.g., a query command), stripped out, and put into the

10

15

20

25

30

35

40

45

50

55

60

65

36

entry at the appropriate column. The various tables described
herein can be combined or separated in various ways. For
example, the post table and the field change table may be part
of the same table or distinct tables, or may include overlap-
ping portions of data.

In block 1060, a comment is received for an event and the
comment is added to a comment table (e.g., comment table
930). The comment could be for a post or an update of a
record, from which a feed tracked update can be generated for
display. In one implementation, the text can be identified in
the transaction (e.g., a query command), stripped out, and put
into the entry at the appropriate column.

D. Reading Information from Feed Tracked Update Tables

FIG. 11 shows a flowchart of an example of a method 1100
for reading a feed item as part of generating a feed for display,
performed in accordance with some implementations. In one
implementation, the feed item may be read as part of creating
a feed for a record.

In block 1110, a query is received for an events history
table (e.g., event history table 910) for events related to a
particular record. In one implementation, the query includes
an identifier of the record for which the feed is being
requested. In various implementations, the query may be
initiated from a detail page of the record, a home page of a
user requesting the record feed, or from a listing of different
records (e.g., obtained from a search or from browsing).

In block 1120, the user’s security level can be checked to
determine if the user can view the record feed. Typically, a
user can view a record feed, if the user can access the record.
This security check can be performed in various ways. In one
implementation, a first table is checked to see if the user has
a classification (e.g., a security level that allows him to view
records of the given type). In another implementation, a sec-
ond table is checked to see if the user is allowed to see the
specific record. The first table can be checked before the
second table, and both tables can be different sections of a
same table. If the user has requested the feed from the detail
page of the record, one implementation can skip the security
level check for the record since the check was already done
when the user requested to view the detail page.

In one implementation, a security check is determined
upon each request to view the record feed. Thus, whether or
not a feed item is displayed to a user is determined based on
access rights, e.g., when the user requests to see a feed of a
record or a news feed of all the objects the user is following.
In this manner, if a user’s security changes, a feed automati-
cally adapts to the user’s security level when it is changed. In
another implementation, a feed can be computed before being
requested and a subsequent security check can be made to
determine whether the person still has access right to view the
feed items. The security (access) check may be at the field
level, as well as at the record level.

Inblock 1130, if the user can access the record, a field level
security table can be checked to determine whether the user
can see particular fields. In one implementation, only those
fields are displayed to the user. Alternatively, a subset of those
the user has access to is displayed. The field level security
check may optionally be performed at the same time and even
using the same operation as the record level check. In addi-
tion, the record type check may also be performed at this time.
If the user can only see certain fields, then any feed items
related to those fields (e.g., as determined from field change
table 920) can be removed from the feed being displayed.

In block 1140, the feed items that the user has access to are
displayed. In one implementation, a predetermined number
(e.g., 20) of feed items are displayed at a time. The method
can display the first 20 feed items that are found to be read-

US 9,075,766 B2

37

able, and then determine others while the user is viewing the
first 20. In another implementation, the other feed items are
not determined until the user requests to see them, e.g., by
activating a see more link.

FIG. 12 shows a flowchart of an example of a method 1200
for reading a feed item of a profile feed for display, performed
in accordance with some implementations. In one implemen-
tation, the query includes an identifier of the user profile feed
that is being requested. Certain blocks may be optional, as is
also true for other methods described herein. For example,
security checks may not be performed.

In block 1210, a query is directed to an event history table
(e.g., event history table 910) for events having a first user as
the actor of the event (e.g., creation of an account) or on which
the event occurred (e.g., a post to the user’s profile). In various
implementations, the query may be initiated by a second user
from the user’s profile page, a home page of a user requesting
the profile feed (e.g., from a list of users being followed), or
from a listing of different users (e.g., obtained from a search
or from browsing). Various mechanisms for determining
aspects of events and obtaining information from tables can
be the same across any of the methods described herein.

In block 1220, a security check may also be performed on
whether the second user can see the first user’s profile. In one
implementation any user can see the profile of another user of
the same tenant, and block 1220 is optional.

In block 1230, a security (access) check can be performed
for the feed tracked updates based on record types, records,
and/or fields, as well security checks for messages. In one
implementation, only the feed tracked updates related to
records that the person has updated are the ones that need
security check as the feed items about the user are readable by
any user of the same tenant. Users of other tenants are not
navigable, and thus security can be enforced at a tenant level.
In another implementation, messages can be checked for
keywords or links to a record or field that the second user does
not have access.

As users can have different security classifications, it is
important that a user with a low-level security cannot see
changes to records that have been performed by a user with
high-level security. In one implementation, each feed item
can be checked and then the viewable results displayed, but
this can be inefficient. For example, such a security check
may take a long time, and the second user would like to get
some results sooner rather than later. The following blocks
illustrate one implementation of how security might be
checked for a first user that has a lot of feed items, but the
second user cannot see most of them. This implementation
can be used for all situations, but can be effective in the above
situation.

In block 1231, a predetermined number of entries are
retrieved from the event history table (e.g., starting from the
most recent, which may be determined from the event iden-
tifier). The retrieved entries may just be ones that match the
user 1D of the query. In one implementation, entries are
checked to find the entries that are associated with the user
and with a record (i.e. not just posts to the user account). In
another implementation, those entries associated with the
user are allowed to be viewed, e.g., because the second user
can see the profile of the first user as determined in block
1220.

In block 1232, the record identifiers are organized by type
and the type is checked on whether the second user can see the
record types. Other checks such as whether a record was
manually shared (e.g., by the owner) can also be performed.
In one implementation, the queries for the different types can
be done in parallel.

10

15

20

25

30

35

40

45

50

55

60

65

38

Inblock 1233, if a user can see the record type, then a check
can be performed on the specific record. In one implementa-
tion, if a user can see a record type, then the user can see all of
the records of that type, and so this block can be skipped. In
another implementation, the sharing model can account for
whether a user below the second user (e.g., the second user is
amanager) can see the record. In such an implementation, the
second user may see such a record. In one implementation, if
a user cannot see a specific record, then comments on that
record are also not viewable.

In block 1234, field level sharing rules can be used to
determine whether the second user can see information about
an update or value of certain fields. In one implementation,
messages can be analyzed to determine if reference to a
particular field name is made. If so, then field level security
can be applied to the messages.

Inblock 1280, blocks 1231-1234 are repeated until a stop-
ping criterion is met. In one implementation, the stopping
criteria may be when a maximum number (e.g., 100) of
entries that are viewable have been identified. In another
implementation, the stopping criteria can be that a maximum
number (e.g., 500) of entries from the entity feed tracked
update table have been analyzed, regardless of whether the
entries are viewable or not.

In one implementation, a news feed can be generated as a
combination of the profile feeds and the entity feeds, e.g., as
described above. In one implementation, a list of records and
user profiles for the queries in blocks 1110 and 1210 can be
obtained from user subscription table 940. In one implemen-
tation, there is a maximum number of objects that can be
followed.

E. Partial Pre-Computing of Items for a Feed

FIG. 13 shows a flowchart of an example of a method 1300
of storing event information for efficient generation of feed
items to display in a feed, performed in accordance with some
implementations. In various implementations, method 1300
can be performed each time an event is written to the event
history table, or periodically based on some other criteria
(e.g., every minute, after five updates have been made, etc.).

In block 1310, data indicative of an event is received. The
data may be the same and identified in the same way as
described for block 1010. The event may be written to an
event history table (e.g., table 910).

In block 1320, the object(s) associated with the event are
identified. In various implementations, the object may be
identified by according to various criteria, such as the record
being changed, the user changing the record, a user posting a
message, and a user whose profile the message is being posted
to.

In block 1330, the users following the event are deter-
mined. In one implementation, one or more objects that are
associated with the event are used to determine the users
following the event. In one implementation, a subscription
table (e.g., table 940) can be used to find the identified objects.
The entries of the identified objects can contain an identifier
(e.g., user ID 941) of each the users following the object

In block 1340, the event and the source of the event, e.g., a
record (for a record update) or a posting user (for a user-
generated post) are written to a news feed table along with an
event identifier. In one implementation, such information is
added as a separate entry into the news feed table along with
the event ID. In another implementation, each of the events
for a user is added as a new column for the row of the user. In
yet another implementation, more columns (e.g., columns
from the other tables) can be added.

News feed table 960 shows an example of such a table with
user ID 961 and event ID or pointer 962. The table can be

US 9,075,766 B2

39

organized in any manner. One difference from event history
table 910 is that one event can have multiple entries (one for
each subscriber) in the news feed table 960. In one implemen-
tation, all of the entries for a same user are grouped together,
e.g., as shown. The user U819 is shown as following events
E37 and E90, and thus any of the individual feed items result-
ing from those events. In another implementation, any new
entries are added at the end of the table. Thus, all of the
followers for a new event can be added as a group. In such an
implementation, the event IDs would generally be grouped
together in the table. Of course, the table can be sorted in any
suitable manner.

In an implementation, if the number of users is small, then
the feed items in one or more of the tables may be written as
part of the same write transaction. In one implementation, the
determination of small depends on the number of updates
performed for the event (e.g., a maximum number of update
operations may be allowed), and if more operations are per-
formed, then the addition of the feed items is performed. In
one aspect, the number of operations can be counted by the
number of rows to be updated, including the rows of the
record (which depends on the update event), and the rows of
the feed tracked update tables, which can depend on the
number of followers. In another implementation, if the num-
ber of users is large, the rest of the feed items can be created
by batch. In one implementation, the feed items are written as
part of a different transaction, i.e., by batch job.

In one implementation, security checks can be performed
before an entry is added to the news feed table 960. In this
manner, security checks can be performed during batch jobs
and may not have to be performed at the time of requesting a
news feed. In one implementation, the event can be analyzed
and if access is not allowed to a feed item of the event, then an
entry is not added. In one aspect, multiple feed items for a
same user may not result from a same event (e.g., by how an
event is defined in table 910), and thus there is no concern
about a user missing a feed item that he/she should be able to
view.

In block 1350, a request for a news feed is received from a
user. In one implementation, the request is obtained when a
user navigates to the user’s home page. In another implemen-
tation, the user selects a table, link, or other page item that
causes the request to be sent.

In block 1360, the news feed table and other tables are
accessed to provide displayable feed items of the news feed.
The news feed can then be displayed. In one implementation,
the news feed table can then be joined with the event history
table to determine the feed items. For example, the news feed
table 960 can be searched for entries with a particular user ID.
These entries can be used to identify event entries in event
history table 910, and the proper information from any child
tables can be retrieved. The feed items (e.g., feed tracked
updates and messages) can then be generated for display.

In one implementation, the most recent feed items (e.g.,
100 most recent) are determined first. The other feed items
may then be determined in a batch process. Thus, the feed
item that a user is most likely to view can come up first, and
the user may not recognize that the other feed items are being
done in batch. In one implementation, the most recent feed
items can be gauged by the event identifiers. In another imple-
mentation, the feed items with a highest importance level can
be displayed first. The highest importance being determined
by one or more criteria, such as, who posted the feed item,
how recently, how related to other feed items, etc.

In one implementation where the user subscription table
940 is used to dynamically create a news feed, the query
would search the subscription table, and then use the object

10

15

20

25

30

35

40

45

50

55

60

65

40

IDs to search the event history table (one search for each
object the user is following). Thus, the query for the news feed
can be proportional to the number of objects that one was
subscribing to. The news feed table allows the intermediate
block of determining the object IDs to be done at an earlier
stage so that the relevant events are already known. Thus, the
determination of the feed is no longer proportional to the
number of object being followed.

In some implementations, a news feed table can include a
pointer (as opposed to an event identifier) to the event history
table for each event that is being followed by the user. In this
manner, the event entries can immediately be retrieved with-
out having to perform a search on the event history table.
Security checks can be made at this time, and the text for the
feed tracked updates can be generated.

X. Display of a Feed

Feeds include messages and feed tracked updates and can
show up in many places in an application interface with the
database system. In one implementation, feeds can be scoped
to the context of the page on which they are being displayed.
For example, how a feed tracked update is presented can vary
depending on which page it is being displayed (e.g., in news
feeds, on a detail page of a record, and even based on how the
user ended up at a particular page). In another implementa-
tion, only a finite number of feed items are displayed (e.g.,
50). In one implementation, there can be a limit specifically
on the number of feed tracked updates or messages displayed.
Alternatively, the limit can be applied to particular types of
feed tracked updates or messages. For example, only the most
recent changes (e.g., 5 most recent) for a field may be dis-
played. Also, the number of fields for which changes are
displayed can also be limited. Such limits can also be placed
on profile feeds and news feeds. In one implementation, feed
items may also be subject to certain filtering criteria before
being displayed, e.g., as described below.

XI. Filtering and Searching Feeds

It can be possible that a user subscribes to many users and
records, which can cause a user’s news feed to be very long
and include many feed items. In such instances, it can be
difficult for the user to read every feed item, and thus some
important or interesting feed items may not be read. In some
implementations, filters may be used to determine which feed
items are added to a feed or displayed in the feed.

FIG. 14 shows a flowchart of an example of a method 1400
for creating a custom feed for users of a database system using
filtering criteria, performed in accordance with some imple-
mentations. Any of the following blocks can be performed
wholly or partially with the database system, and in particular
by one or more processor of the database system.

In block 1410, one or more criteria specifying which feed
items are to be displayed to a first user are received from a
tenant. In one implementation, the criteria specify which
items to add to the custom feed. For example, the criteria
could specify to only include feed items for certain fields of a
record, messages including certain keywords, and other cri-
teria mentioned herein. In another implementation, the crite-
ria specify which items to remove from the custom feed. For
example, the criteria could specify not to include feed items
about certain fields or including certain keywords.

In block 1420, the database system identifies feed items of
one or more selected objects that match the criteria. The feed
items can be stored in the database, e.g., in one or more of the
tables of FIG. 9A. In one implementation, the one or more
selected objects are the objects that the first user is following.
In another implementation, the one or more selected objects is
a single record whose record feed the first user is requesting.

US 9,075,766 B2

41

In block 1430, the feed items that match the criteria are
displayed to the first user in the custom feed. The generation
of text for a feed tracked update can occur after the identifi-
cation of the feed items (e.g., data for a field change) and
before the display of the final version of the feed item.

In one implementation, the criteria are received before a
feed item is created. In another implementation, the criteria
are received from the first user. In one aspect, the criteria may
only be used for determining feeds to display to the first user.
In yet another implementation, the criteria are received from
a first tenant and apply to all of the users of the first tenant.
Also, in an implementation where criteria are specified, the
criteria may be satisfied for a feed item if one criterion is
satisfied.

Some implementations can provide mechanisms to search
for feed items of interest. For example, the feed items can be
searched by keyword, e.g., as entered by a user. As another
example, a tab (or other selection device) can show feed items
about or from a particular user. In one implementation, only
messages (or even just comments) from a particular user can
be selected. Besides searching for feed items that match cri-
teria, one also could search for a particular feed item.

XI1I. Determining Whether to Continue Relationships in a
Social Network

FIGS. 15A and 15B show a flowchart of an example of a
computer implemented method 1500 for determining
whether to continue a relationship in an online social net-
work, performed in accordance with some implementations.
At block 1504 of FIG. 15A, a server such as an app server
described above maintains data entries in one or more data-
base tables to provide information for monitoring social net-
working relationships between users and various entities. For
example, FI1G. 19 shows an example of a database table 1900
identifying social networking relationships between users
and entities, according to some implementations. In table
1900, various social network entities are identified in column
1904. Fields in entity column 1904 can include data identi-
fying various types of entities such as users, groups, records,
information updates, CRM objects such as leads, opportuni-
ties, accounts, cases, contracts, etc., as well as other various
files and data sources stored in a social networking system
and/or database system.

In the example of FIG. 19, a user, Zach Dunn, is identified
in fields 1906 and 1908 of entity column 1904. A group, XYZ
Competitive Group, is identified in fields 1910 and 1912. A
post having an event ID of E90, referring to event ID column
951 of post table 950 in FIG. 9A, by way of example, is
identified in fields 1914, 1916 and 1918 of entity column
1904. As mentioned above, various types of CRM objects can
be identified as entities in column 1904. In this example, an
opportunity named Opportunity-123K is identified in fields
1920 and 1922. Another CRM object, an account named
Account-ABC is identified in fields 1924 and 1926. Various
other users, groups, information updates, CRM objects, files
and data sources can be identified as entities in column 1904.

In FIG. 19, users having various types of social networking
relationships with corresponding entities identified in column
1904 are identified in column 1930. For example, Joe Olsen,
an employee user of an online social network implemented at
Acme, Inc. is identified: in field 1932 as a friend of Zach Dunn
(field 1906), in field 1934 as a follower of XYZ Competitive
Group (field 1912), in field 1936 as a commenter on post E90
(field 1916), in field 1938 as a follower of Opportunity-123K
(field 1920) and in field 1940 as a follower of Account-ABC
(field 1924). Another employee user, Shelley Smith, is iden-
tified in field 1942 as a follower of Zach Dunn (field 1908) and
in field 1944 as having liked post E90 (field 1914). Another

10

15

20

25

30

35

40

45

50

55

60

65

42

employee user, Parker Harris, is identified in field 1946 as a
member of XYZ Competitive Group (field 1910). Thus, inthe
example of FIG. 19, various social networking relationships
between users and entities can be monitored such as follow-
ing relationships, friending relationships, liking relation-
ships, memberships in groups, memberships in communities,
etc. In some implementations, an additional column can be
constructed in table 1900 to identify the specific type of social
networking relationship between a given user in column 1930
and a given entity in column 1904. However, as shown in the
examples below, such an additional column is not necessary
to implement some of the techniques disclosed herein.

InFIG. 19, rows oftable 1900 are configured such that each
row identifies a unique pair of an entity and a user having a
social networking relationship with that entity. That is, while
a given entity can be identified more than once in column
1904, and a given user can be identified more than once in
column 1930, a given row of table 1900 identifies a unique
user-entity pair. In this way, a column 1950 can be included as
part of table 1900 to maintain a respective affinity score for
each user-entity pair identified in a row of table 1900. Each
affinity score in the fields of column 1950 generally indicates
an amount of interaction by the user with the entity identified
in a given row, as further explained below. For example, in
row 1960, when Joe Olsen likes a post submitted by Zach
Dunn, the affinity score in field 1970 can be incremented. In
another example, in row 1962, when Shelley Smith clicks a
“more” selection displayed in conjunction with post E90, that
is, to request more content of post E90, an affinity score in
field 1972 can be updated. In another example, in row 1964,
when Joe Olsen submits a post using a publisher on the
Opportunity-123K page shown in FIG. 8, the affinity score
corresponding to Joe Olsen’s following relationship with
Opportunity-123K is incremented in field 1974. Various other
types of interactions between unique pairs of users and enti-
ties in the rows of table 1900 can be detected to cause the
affinity score identified in a corresponding field of column
1950 to be updated accordingly. Over time, as additional
interactions between a user and an entity in a given row of
table 1900 are detected, one or more servers maintaining table
1900 are configured to access that row and update the affinity
score in the appropriate field of column 1950.

Affinity scores between unique user-entity pairs can be
used to determine whether to maintain a social networking
relationship between the given user and entity, as illustrated in
the examples set forth below. In addition, in some implemen-
tations, an inflation factor can be used to normalize an affinity
score to compensate for the passage of time among interac-
tions between the user and entity. For example, an inflation
factor can be applied at appropriate times such that newer
interactions between a given user and entity have a higher
point value, i.e., are “worth” more than older interactions
between the same user and entity. As shown in the examples
below, point values maintained in fields of affinity score col-
umn 1950 of FIG. 19 can be adjusted based on such an
inflation factor to adjust the value of a given interaction
depending on when the interaction was received. The value of
a given interaction in some implementations generally
decreases as time passes after the interaction occurred. By the
same token, the value of a current interaction can be higher
than the value of an interaction occurring, for example, 1 day,
1 week, or 1 month ago. Thus, in the example of FIG. 19, if
Joe Olsen liked post E90 1 week or 1 month ago and liked a
different post, post E91 today, an inflation factor can be
applied such that Joe Olsen’s interaction with post E91 has a
higher point value than Joe’s interaction with post E90 in
terms of an affinity score. For instance, the inflation factor can

US 9,075,766 B2

43

be a function of time having a value, which is doubled on a
daily, weekly, monthly, etc. basis.

Returning to FIG. 15A, at block 1508, when determining
whether to continue a social networking relationship between
a unique user-identity pair in a given row of table 1900, the
affinity score in that row is retrieved and divided by a current
value of an inflation factor to calculate a normalized affinity
score. Numerical examples of affinity scores and calculations
to determine normalized affinity scores are provided in the
examples described below.

In FIG. 15A, at block 1512, the ratio of the normalized
affinity score of block 1508 to a measure of an amount of
content associated with the specific entity of the given user-
entity pair and published in a feed accessible by that user is
determined. For example, column 1980 in table 1900 of FIG.
19 can be maintained to identify a number of feed items
published in a given user’s news feed by or on behalf of a
given entity identified in a row oftable 1900. In this example,
as shown in FIG. 19, row 1960 of table 1900 shows that 10
feed items associated with the entity Zach Dunn were pub-
lished to Joe Olsen’s news feed, while row 1962 shows that 4
feed items were published to Shelley Smith’s news feed as a
result of following post E90. In general, at block 1512 of FIG.
15A, the measure of the amount of content such as a number
of feed items is intended to approximate a volume of data that
the given entity was responsible for delivering to the given
user’s feed for display in a GUI. For example, the measure of
the amount of content at block 1512 can be calculated by
counting a number of posts from that entity in a defined
timeframe, such as the last 2 weeks. In other examples, any of
various types of feed items delivered directly from that entity
to the user’s feed or to another feed accessible by the user can
be counted.

In some implementations, the measure of the amount of
content at block 1512 includes feed items received directly
and indirectly from the given entity. For example, posts from
other entities having child-parent or parent-child relation-
ships with the given entity can be counted. Hierarchical rela-
tionships between entities can take various forms in a social
networking environment. For example, a comment on a post
can be designated a child of the post, which is the parent. By
the same token, the comment and post can be considered
children of a parent user who submitted the post. In another
example, the posts on an opportunity page can be considered
children of that opportunity. In another example, record
updates can be considered children of a given record, while
posts and comments in response to the record update from
various users can be considered grandchildren of the record.
Thus, various relationships among entities in an online social
network can be identified in terms of a parent-child hierarchy.
Returning to block 1512, content published directly by an
entity or indirectly by another user or entity having a parent-
child or child-parent relationship with the entity can be
included in the measure for determining the ratio described
above. This measure can be in terms of a number of feed items
directly or indirectly received from the given entity, often by
counting the number of items appearing in a specific feed,
such as the user’s news feed, and time inflating the count
using an inflation factor, as described in greater detail below.

In FIG. 15A, at block 1512, in some implementations, the
measure of the amount of content associated with a given
entity can be calculated in terms of the content in information
updates received by or on behalf of that entity. For instance, a
post containing 200 words can have a higher measure than a
posthaving 1 word or 1 symbol. Thus, in different implemen-
tations, the measure of the amount of content at block 1512
can vary to be calculated as a number of feed items in some

10

15

20

25

30

35

40

45

50

55

60

65

44

instances, as a volume of content regardless of the number of
feed items in other instances, or some combination thereof.

In some implementations, a post and all of the comments
received on that post are considered a single feed item for
purposes of counting feed items. In other implementations,
the post or an initial record update is considered a first feed
item, while each comment received on that post or record
update is counted as a separate feed item. The initial post or
record update can be identified as a parent entity, while the
comments received regarding that post or record update are
child entities of that parent entity. By the same token, the
users submitting comments on a given post or record update
can be considered children ofthe parent post or record update,
and/or such users can be considered children of a user or
record from which the initial post or record update was
received.

InFIG. 15A, at block 1512, the feed accessible by the user
can be the user’s profile feed or another feed to which the user
may have access, such as a group feed for a group of which the
user is a member or a record feed of a record to which the user
has read/write privileges.

In FIG. 15A, at block 1516, the ratio determined at block
1512 is compared with a threshold. The threshold can be set
and adjusted through experimentation as will be understood
by those skilled in the art. In this example, because the origi-
nal affinity score for a given user-entity pair is adjusted by an
inflation factor at block 1508 and divided by the measure of
the amount of content published in a feed on behalf of the
entity at block 1512, the threshold can be set according to
those adjustments. In some implementations, a server can be
configured to adjust the threshold automatically in response
to a user confirming or denying a recommendation to unsub-
scribe from an entity, as further explained below. For
example, when the user rejects a certain percentage of rec-
ommendations, the threshold can be raised by a designated
amount, and when the user accepts a certain percentage of
recommendations, the threshold can be lowered by the same
or a different amount. In addition, through experimentation,
the threshold of block 1516 can be tailored to a given user’s
interaction behavior. For example, some users may only click
a “more” selection in conjunction with posts but never like or
comment on posts. In such instances, the threshold of block
1516 can be adjusted for a given user to have an appropriate
value.

In FIG. 15A, at block 1520, it is determined whether the
ratio of block 1516 meets or traverses the threshold. For
example, when the ratio is too low and meets or falls below a
designated threshold, it can be desirable to issue a recommen-
dation to the user to unsubscribe from the entity in that user-
identity pair. At block 1522, when the ratio does not meet or
traverse the threshold, processing returns to block 1504
described above. At block 1520, when the ratio does meet or
traverse the threshold, method 1500 proceeds to block 1524,
at which point the social networking relationship of the given
user-entity pair is identified as a candidate for being discon-
tinued. In such instances, an appropriate first communication
including a recommendation to discontinue the social net-
working relationship can be generated at block 1528. Atblock
1532 of FIG. 15B, such a communication can be provided to
a user’s computing device.

The first communication of blocks 1528 and 1532 can take
various forms. For example, an “unfollow?”” widget or desig-
nated region of a GUI displaying a presentation of social
networking data to a user can be maintained such that com-
munications generated at block 1528 are presented in such a
widget or other region in response to the determination at
block 1524. By the same token, as social networking relation-

US 9,075,766 B2

45

ships between a given user and various entities are identified
as candidates for being discontinued at block 1524, pop-up
windows can be generated and displayed in the user’s inter-
face, for example, positioned adjacent to or overlaying posts
from the entities. In other implementations, communications
generated and delivered at blocks 1528 and 1532 can be in the
form of daily or weekly bulk emails to the given user’s email
account to provide a list of entities which the user may wish
to stop following. The communications of blocks 1528 and
1532 can take various other forms including private messages
in a social networking system, posts to a user’s profile feed or
other feed accessible by the user, text messages available
through cellular and other wireless networks, and phone calls.

In some implementations, such as the example of FIGS.
15A and 15B, it is desirable to provide users with an option to
confirm or deny a recommendation to discontinue a social
networking relationship with a specific entity. Thus, before
terminating a social networking relationship of a unique user-
identity pair in table 1900 of F1G. 19, the user can be provided
with an option of overriding a recommendation and confirm-
ing that the user is still interested in following the specific
entity. In such instances, when a user overrides the recom-
mendation, that unique user-entity pair can be removed from
table 1900 or flagged as a pair for which recommendations
will not be generated for some period of time. In another
implementation, when a user overrides a recommendation, a
point value of the affinity score for that user-entity pair can be
significantly increased by a sufficient margin such that the
score will not fall below the threshold of block 1516 for at
least 3 months, 6 months, etc. even with no further interac-
tions by the user with that entity.

Thus, in FIG. 15B, at block 1536, a second communication
is received from the user’s computing device in response to
the first communication of block 1532. Often, the second
communication will take the same form as the first commu-
nication, such as a text message, comment on a post, reply
email, etc. At block 1540, a server performing method 1500
determines whether the second communication includes a
confirmation or a denial of the recommendation. For
example, at block 1544, when the user confirms that he or she
wishes to discontinue or suspend following the identified
entity, the social networking relationship between the given
user and the given entity can be discontinued or suspended,
for instance, by deleting the appropriate row from table 1900,
setting a flag or other indicator for a time period in a further
column of table 1900, or providing some other marker in
another location on a database system.

Returning to block 1540, when the second communication
rejects the recommendation to discontinue following the spe-
cific entity, the affinity score for that user-entity pair can be
increased by a margin to ensure that the user-entity pair will
not be a candidate for generating recommendations to discon-
tinue the relationship therebetween for a sufficient period of
time as explained above.

FIG. 16 shows a flowchart of an example of a computer
implemented method 1600 for determining whether to con-
tinue a relationship in an online social network, performed in
accordance with some implementations. At block 1604, one
or more database tables are maintained by a server or servers
to generally include identifications of entities, identifications
of users having various types of social networking relation-
ships with those entities, and affinity scores indicating
amounts of interaction by users with entities as generally
described above with reference to FIGS. 15A and 19. For
example, FIGS. 20A and 20B show an example of a database
table 2000 identifying social networking relationships
between users and entities, according to some implementa-

20

35

40

45

46
tions. Table 2000 of FIGS. 20A and 20B is structured in a
similar manner as table 1900 of FIG. 19, that is, with an entity
column 2004, a user column 2014 and an affinity score col-
umn 2024 identifying unique user-entity pairs and corre-
sponding affinity scores in the form of point values indicating
the amount of interaction by a given user with a given entity.

In some implementations, an affinity score maintained in a
row of table 2000 is updated to count point values of specific
interactions by the given user with the given entity in that row.
In this example, users Shelley Smith, Joe Olsen and Zach
Dunn are all followers of post E90 as shown in rows 2034,
2044 and 2054. Any of the users identified in column 2014
can interact with an entity such as post E90 in different
manners. For example, Shelley Smith may click on a selec-
tion in a GUI displayed on her computing device to “like” post
E90. In another instance, Joe Olsen may click on a selection
in a GUI on his computing device to comment on post E90,
while Zach Dunn may click on a “more” selection on his
computing device to request further content of a partial dis-
play of post E90. These various different types of interactions
can have different corresponding point values in terms of an
affinity score. Each interaction, such as a “like”, “comment”
or “more” can cause a corresponding point value to be added
to the affinity score maintained in column 2024. In this
example, Shelley’s “like” is worth 2 points, Joe’s comment is
worth 4 points, and Zach’s “more” selection is worth 5 points.
Thus, as shown in FIG. 20B, the point values in fields 2064,
2068 and 2072 of affinity score column 2024 have been
updated from a null value to 2 points in field 2064, from 2
points to 6 points (2+4) in field 2068 and from 1 point to 6
points (1+5) in field 2072.

Those skilled in the art should appreciate that various types
of interactions with feed items and other entities in a social
networking system can have the same or different point val-
ues, depending on the desired implementation. In addition,
the interactions can be directly between a user and an entity
being followed by that user, as in the examples of FIGS. 20A
and 20B, while in other instances, a user indirectly interacts
with an entity identified in column in 2004 by clicking on a
different entity associated with the identified entity. For
example, returning to the example of FIG. 19, in row 1960,
the affinity score in field 1970 can be updated by Joe Olsen
commenting on a record update of a record created by Zach
Dunn.

Thus, by assigning different point values to different types
of interactions in a social networking system, different inter-
actions can have different effective weights. The types of
interactions can be characterized depending on the available
actions to a user to consume content or otherwise directly or
indirectly request information associated with an entity in the
social networking system.

In some implementations, an affinity score maintained for
a given user-entity pair in a table such as tables 1900 or 2000
can be updated in response to each interaction. That is, in
some implementations, a server is configured to identify or
receive a notification that a user such as Shelley Smith has
liked or otherwise interacted with an entity in the entity col-
umn and update the corresponding affinity score by an appro-
priate point value in response to that specific interaction. The
same processing can occur in response to each interaction by
other users such as Joe Olsen and Zach Dunn with respect to
various entities.

In other implementations, affinity scores maintained for
given user-entity pairs can be updated at designated times, for
instance on a periodic basis. For example, one or more servers
can be configured to run a batch job every night at 2 am to
access a table such as table 1900 or table 2000 to update all of

US 9,075,766 B2

47

the affinity scores in columns 1950 or 2024 to add point
values for any interactions between a given user and a given
entity in a user-entity pair. Thus, in such implementations,
when a user such as Joe Olsen has liked, commented multiple
times, and clicked a “more” selection regarding post E90,
point values corresponding to each interaction can be added
to the affinity score in field 2068 of FIGS. 20A and 20B as part
of the same nightly batch job. In such batch job implementa-
tions, in some instances, feed tables such as those described
above with respect to FIG. 9A can be accessed using appro-
priate identifiers to retrieve the various types of interactions
such as comments, field changes, posts, likes, etc. by a given
user with a given entity.

Returning to FIG. 16, at block 1608, an affinity score for a
given user-entity pair in a row of table 1900 or 2000 is divided
by a current value of an inflation factor to determine a nor-
malized affinity score, as generally described above with
reference to block 1508 of FIG. 15A. Thus, in implementa-
tions where an inflation factor changes over time, the affinity
score represented by the point value in a field of column 1950
or 2024 in FIGS. 19 and 20B can be normalized accordingly
before additional processing such as ratio determinations
and/or comparisons with designated thresholds.

In FIG. 16, at block 1612, a ratio of the normalized affinity
score of block 1608 to a measure of an amount of content
associated with a given entity identified in a row of table 1900
or 2000 and published in a feed accessible by the given user is
calculated, as generally described above at block 1512 of
FIG. 15A. As mentioned above, in some implementations, the
measure of an amount of content associated with a given
entity can be in terms of a number of feed items directly or
indirectly received from that entity and published during a
specified timeframe such as a day, a week, a month, etc. In
such implementations, the timeframe can be customized
according to the desired implementation, as can the types of
feed items qualifying for the measure of the amount of con-
tent, such as posts, comments, likes, “more” selections,
record updates and various selections thereof. In some other
implementations, rather than measuring the amount of con-
tent over a fixed timeframe, a time inflated measure of an
amount of content can be maintained, for instance, using the
same inflation factor applied to normalize the affinity score.
In addition, a particular feed or feeds can be specified to
identify feed items for measuring an amount of content for the
purpose of calculating a ratio at block 1612. For instance, in
some implementations, the only feed in which feed items are
counted is the user’s profile feed of the given user in a user-
entity pair. In other instances, other feeds can be specified,
such as a group feed, a record feed, or any combination
thereof.

At block 1616, the ratio determined at block 1612 is com-
pared with a threshold, as generally described above at block
1516. Blocks 1616, 1620, 1622 and 1624 are generally imple-
mented in the same manner as blocks 1516, 1520, 1522 and
1524 of FIG. 15A, as described above. One difference
between methods 1500 and 1600 is at block 1628 of FIG. 16,
following an identification of a given user-entity pair for
discontinuing the social networking relationship therebe-
tween. That is, while recommendations are generated and
communicated to users in method 1500, atblock 1628 of F1G.
16, the social networking relationship between that user and
entity is automatically suspended or discontinued. Thus, in
some implementations, a user is not consulted for input as to
whether a social networking relationship should be discon-
tinued. Such implementations can be beneficial to assist cer-
tain users who have a habit of following, friending, or other-
wise establishing social networking relationships with large

20

40

45

50

48

numbers of entities. In such instances, at block 1628, a rela-
tionship between a given user and a given entity can be
discontinued. In other instances, such as cases where the
relationship between a given user and a given entity is to be
suspended, a flag can be set or other data value stored on a
suitable storage medium to identify the user-entity pair and a
time period during which the relationship between the user
and entity will be suspended.

As mentioned above, the inflation factor used at blocks
1508 and 1608 of methods 1500 and 1600 can be a function of
time. In some implementations, the current value of an infla-
tion factor can also be applied to adjust point values of spe-
cific interactions when updating an affinity score between a
given user-entity pair as described above with reference to
FIGS. 20A and 20B. For example, an inflation factor can be
configured to have a value which doubles every 2 weeks.
Thus, if a “like” of a post is worth 2 points and the inflation
factor has a value of 1 at time t=0, a like at time t=0 would
result in a point value of 1x2=2 points to be added to the
affinity score. Two weeks later, at time t=1, the inflation factor
would have a value of 2 and, thus, a like of a post would have
avalue of 4 (2x2) to be added to the affinity score. Attime t=2,
two weeks after time t=1, the inflation factor would be
doubled again to have a value of 4. Thus, a like of a post at
time t=2 would cause the affinity score to be incremented by
a point value of 2x4=8. Thus, in this example, every two
weeks the value of a like is doubled. Viewed another way, a
like in this example would have a half-life of 2 weeks.

While the example above provides a half-life of 2 weeks,
those skilled in the art should appreciate that inflation factors
can be adjusted at various rates, such as on an hourly, daily,
weekly, monthly, semi-annually, etc. basis depending on the
desired implementation. Thus, a server can quickly calculate
the current value of an inflation factor according to the current
time and day, that is, according to where the current time and
day fit within the designated half-life.

By applying the inflation factor to user interactions when
they are counted to update the point value of an affinity score
maintained in a field of columns 1950 or 2024 of tables 1900
and 2000, the then-current value of the inflation factor is
applied as described above. However, as time passes, and the
accumulated affinity score for the given user-entity pair is
retrieved from table 1900 or 2000 to perform the calculations
of blocks 1508 and 1608 of methods 1500 and 1600, a later
value of the inflation factor can be used. Thus, at the moment
blocks 1508 and 1608 are performed, a current value of the
inflation factor is again used that may be different than the
past value of the inflation factor used to adjust the point value
of an interaction when the affinity score was updated.

In some examples, the measure of an amount of content
associated with an entity and published to a feed associated
with a user of a given user-entity pair can also be time inflated
by the same value of the inflation factor used to determine the
normalized affinity score. Thus, the same current value of an
inflation factor can be used to adjust both an affinity score and
a number of feed items after being retrieved from table 1900
in FIG. 19 for a given user-entity pair. In such examples,
because both the affinity score and the number of feed items
would be normalized by the inflation factor, for instance, by
dividing both the affinity score and the number of feed items
by the same inflation factor value, the inflation factor can be
omitted from these calculations. That is, the ratio can be
calculated between the “raw” or original affinity score and
original number of feed items retrieved from a database table
such as table 1900 of FIG. 19 for a given user-entity pair.

FIG. 17 shows a flowchart of an example of a computer
implemented method 1700 for determining whether to con-

US 9,075,766 B2

49

tinue relationships in an online social network, performed in
accordance with some implementations. The example of
method 1700 does not employ inflation factors. At block
1704, a server maintains data entries in one or more tables,
where the data entries include identifications of user-entity
pairs as well as corresponding affinity scores, in similar fash-
ion as blocks 1504 and 1604 of methods 1500 and 1600
described above.

In FIG. 17, at block 1708, a ratio of the affinity score for a
given user-entity pair to a measure of an amount of content
associated with the given entity and published in a feed acces-
sible by the given user is determined. In the example of FIG.
17, the “raw” affinity score maintained in table 1900 or table
2000 in association with a user-entity pair is used to deter-
mine the ratio as opposed to the processing of methods 1500
and 1600, in which this raw affinity score value is first nor-
malized using the inflation factor. Also at block 1708, the
measure of the amount of content is the “raw” count of a
number of feed items as maintained in and retrieved from
column 1980 of table 1900 for the given user-entity pair, as
opposed to other implementations in which the number of
feed items would be adjusted by an inflation factor.

In FIG. 17, at block 1716, the ratio determined at block
1708 is compared with a threshold. In this example, since the
affinity score retrieved from a table such as table 1900 for a
given user-entity pair is not normalized by an inflation factor
before determining the ratio of the affinity score to the mea-
sured amount of content, the threshold can be adjusted by
such an inflation factor. Those skilled in the art will appreciate
that the threshold value can thus be a function of time in some
implementations and can change at various rates and accord-
ing to various functions in the same manner as the inflation
factor described above with reference to methods 1500 and
1600. For example, the threshold can have a half-life of 2
weeks, at which point the value of the threshold is doubled.

Blocks 1720, 1722 and 1724 of FIG. 17 correspond to and
are implemented in a similar manner as respective blocks
1616, 1620, 1622 and 1624 of FIG. 16 as described above.

In the examples of FIGS. 15-17, a threshold is used to
determine whether to discontinue, suspend, or issue a recom-
mendation to discontinue a social networking relationship
between a user and an entity. That is, in the examples above,
the ratio of an affinity score or a normalized affinity score to
a measure of an amount of content is compared with a thresh-
old to determine whether to automatically discontinue or
suggest to the user to discontinue the social networking rela-
tionship. In some other implementations, as an alternative to
using a threshold, affinity scores for user-entity pairs can be
ranked for the same general purpose. This way, for example,
user-entity pairs having the lowest relative affinity scores can
be identified as candidates for discontinuing the social net-
working relationship therebetween.

In some other implementations, both rankings and thresh-
olds are used to identify such candidates. For example, it may
be desirable in some contexts to not issue a recommendation
to discontinue a relationship with an entity to the users having
the lowest ranking affinity scores when all of the affinity
scores are above a threshold. By the same token, in some other
contexts, when all or a large majority of user-entity pairs have
affinity scores falling below a threshold, it can be desirable to
issue recommendations for a subset of those user-entity pairs,
for example, for only the lowest ranking one or two affinity
scores, rather than issuing recommendations to all user-entity
pairs.

FIG. 18 shows a flowchart of an example of a computer
implemented method 1800 for determining whether to con-
tinue relationships in an online social network, performed in

10

15

20

25

30

35

40

45

50

55

60

65

50

accordance with some implementations. At block 1804, a
server is configured to maintain identities of unique user-
entity pairs and corresponding affinity scores, as generally
described in the examples above. At block 1808, for each data
entry, a ratio of the affinity score to a measure of an amount of
content is determined as generally described above at block
1708 of FIG. 17. At block 1812 of FIG. 18, the ratios deter-
mined for each user-entity pair at block 1808 are ranked in
numerical order. In this way, at block 1816, user-entity pairs
corresponding to one or more of the ranked ratios can be
selected according to the position of those ratios in the
numerical order. As mentioned above, the user-entity pair
having the lowest position in the ranking can be selected. In
other examples, a subset of user-entity pairs having lower
positions in the ranking, such as the lowest two or three ratios,
can be selected.

In some implementations, the user-entity pairs selected at
block 1816 can be identified as candidates for discontinuing
the social networking relationship therebetween. In other
implementations, when it is desirable to perform additional
filtering of the user-entity pairs selected at block 1816, at
block 1820, a server is configured to determine whether the
ratios of the selected user-entity pairs at block 1816 also meet
or traverse a threshold. For example, at block 1822, when
none of the ratios are equal to or lower than the threshold,
processing returns to block 1804. On the other hand, at block
1820, when one or more of the selected user-entity pairs have
ratios equal to or less than the threshold, processing proceeds
to block 1824 to identify the selected user-entity pairs as
candidates for discontinuing the social networking relation-
ship therebetween.

FIG. 21 shows an example of a timeline 2100 for monitor-
ing user interactions and maintaining affinity scores in rela-
tion to an inflation factor, according to some implementa-
tions. In the simplified representation of FIG. 21, timeline
2100 is maintained on the order of months, with each “X”
indicating a respective interaction by a given user with a given
entity at t=1 month, t=2 months, t=3 months and t=4 months.
As shown in FIG. 21, no interaction occurs at t=5 months.
Time t=0 represents the beginning of a time period during
which an amount of content is measured and/or the beginning
of a time at which any of the methods described above with
reference to FIGS. 15-18 are performed.

In FIG. 21, an inflation factor 2114 is implemented as an
exponential function in terms of Inf(t)=2°. Thus, at t=1
Inf(t)=2, at t=2 Inf(t)=4, at t=3 Inf(t)=8, at t=4 Inf(t)=16, and
at t=5 Inf(t)=32. An affinity score 2118 is also maintained, as
generally described above in the examples of FIGS. 19, 20A
and 20B. Assuming all of the interactions in timeline 2100 are
between the same user and the same entity, affinity score 2118
maintained for that user-entity pair is updated as shown in
FIG. 21. That is, applying Inf{(t) of 2 to the interaction at t=1,
the affinity score has an initial value of 2, assuming the score
was 0 at t=0. The interaction at t=2, has Inf{t) of 4 applied.
Thus, at t=2, affinity score 2118 is incremented by 4 to have
avalue of 6. An Inf{(t) of 8 is applied to the interaction at t=3,
causing affinity score 2118 to be incremented by 8 to have a
total value of 14. At t=4, an inflation factor of 16 is applied to
that interaction, causing affinity score 2118 to be incremented
from 14 to 30, as shown in FIG. 21. Because there is no
interaction at t=5, the affinity score is not incremented and,
thus, maintains its value of 30.

In FIG. 21, when affinity score values are retrieved from a
suitable database table, as described above, in some imple-
mentations, the affinity score can be divided by the inflation
factor to determine a normalized affinity score. Thus, in the
example of FIG. 21, retrieving the affinity score to perform

US 9,075,766 B2

51

methods 1500 and 1600 at the indicated times in the timeline
would result in normalized affinity score 2122 determina-
tions, as shown in FIG. 21. That is, at t=1, the affinity score of
2 would be divided by Inf(t) of 2 to yield a 1 value for
normalized affinity score 2122. By the same token, at t=2, 6
would be divided by 4 to arrive at a 1.5 value. Normalized
affinity score 2122 values at t=3, t=4 and t=5 are determined
in the same manner, that is, by dividing affinity score 2118 by
inflation factor 2114 at that particular time.

In FIG. 21, a number of new feed items 2126 received
during a 1-month interval and associated with a given entity in
a user-entity pair is identified. Thus, at t=1, a total of 16 new
feed items were received between t=0 and t=1. At time t=2, a
total of 5 new feed items were received between t=1 and t=2,
thus providing a total feed item count of 16+5=21. By the
same token, between t=2 and t=3, 2 new feed items were
received, thus providing a total of 21+2=23 new feed items
since t=0. In this example, no new feed items were received
between t=3 and t=5. Thus, at any given time when a ratio of
normalized affinity score 2122 to a total number of feed items
2126 is to be determined, as in the examples above, the
appropriate information can be retrieved, for instance, at t=2
to divide normalized affinity score 2122 of 1.5 by the total
number of new feed items of 16+5=21. Att=5, the normalized
affinity score of 0.9375 would be divided by the total feed
items from the entity received since time=0, 16+5+2+0+0=23
feed items to determine the ratio. In some other implementa-
tions, the number of new feed items and/or the threshold with
which the ratio is compared can be adjusted by the value of
Inf(t) at a time when calculating the ratio, such as t=2 in the
example above, or can remain fixed, depending on the desired
implementation.

In some implementations, as explained above, the current
value of an inflation factor can be used both when updating an
affinity score to account for a user’s particular interaction
with an entity as well as when the affinity score is retrieved to
perform the processing of the methods disclosed herein.
Thus, for example, at the time an interaction is identified, the
value of the inflation factor at that time can be multiplied by
a default point value of the interaction. Thus, in the example
of FIG. 21, the interaction received at t=2 has a default point
value of 1 and would thus yield an affinity score value of
2%x1=4 to add to the total point count of that affinity score.
However, when reading an affinity score from a table such as
FIG. 19 to perform additional processing of the methods
disclosed herein, the later inflation factor at the time of read-
ing the affinity score would be used. Thus, in FIG. 21, when
reading the total affinity score of 30 at t=4, the inflation factor
at t=4 of 2*=16 would be used to divide 30 by that inflation
factor, i.e., 30/16 to arrive at the normalized affinity score of
1.875 at t=4.

Thus, in instances when the affinity score is immediately
retrieved, that is, in close proximity to the time the score is
updated, the point value of an interaction at that time would be
the same, because the default value was multiplied and
divided by the same inflation factor. However, an adjusted
point value of the interaction at t=1, that is, by applying the
inflation factor of 2 to yield an affinity score point value of 2
would have a lower value at a future time, such as t=3, where
the affinity score including the point value of the interaction at
t=1 would be divided by the later inflation factor of 8. Thus, in
the example of FIG. 21, the values of interactions in terms of
normalized affinity score decrease over time, that is, on a
monthly basis in this example.

In other examples, the half-life of an interaction can be
hourly, daily, weekly, etc. In such examples, the inflation
factor can have various implementations. In some examples,

30

40

45

52

when interactions are received at times within a given month
or other half-life, t can have a more marginal value. For
example, in FIG. 21, the monthly half-life in the timeline
could be sub-divided in to 0.1 intervals. Thus, in this example,
inflation factor 2114 could be implemented as an exponential
function in the form of 2, 2!, 2!, etc. to capture the
sub-intervals between t=1 and t=2. Thus, for a feed item
received at time t=1.5, inflation factor 2114 would have a
value of 2'-*. Those skilled in the art should appreciate that the
representation in FIG. 21 provides a simplified example dur-
ing which interactions received at various times during a
given month are identified as having been received at the end
of that month, i.e., at t=1, t=2, etc.

The specific details of the specific aspects of implementa-
tions disclosed herein may be combined in any suitable man-
ner without departing from the spirit and scope of the dis-
closed implementations. However, other implementations
may be directed to specific implementations relating to each
individual aspect, or specific combinations of these indi-
vidual aspects.

While the disclosed examples are often described herein
with reference to an implementation in which an on-demand
database service environment is implemented in a system
having an application server providing a front end for an
on-demand database service capable of supporting multiple
tenants, the present implementations are not limited to multi-
tenant databases nor deployment on application servers.
Implementations may be practiced using other database
architectures, i.e., ORACLE®, DB2® by IBM and the like
without departing from the scope of the implementations
claimed.

It should be understood that some of the disclosed imple-
mentations can be embodied in the form of control logic using
hardware and/or using computer software in a modular or
integrated manner. Other ways and/or methods are possible
using hardware and a combination of hardware and software.

Any of the software components or functions described in
this application may be implemented as software code to be
executed by a processor using any suitable computer lan-
guage such as, for example, Java, C++ or Perl using, for
example, conventional or object-oriented techniques. The
software code may be stored as a series of instructions or
commands on a computer-readable medium for storage and/
or transmission, suitable media include random access
memory (RAM), a read only memory (ROM), a magnetic
medium such as a hard-drive or a floppy disk, or an optical
medium such as a compact disk (CD) or DVD (digital versa-
tile disk), flash memory, and the like. The computer-readable
medium may be any combination of such storage or trans-
mission devices. Computer-readable media encoded with the
software/program code may be packaged with a compatible
device or provided separately from other devices (e.g., via
Internet download). Any such computer-readable medium
may reside on or within a single computing device or an entire
computer system, and may be among other computer-read-
able media within a system or network. A computer system,
or other computing device, may include a monitor, printer, or
other suitable display for providing any of the results men-
tioned herein to a user.

While various implementations have been described
herein, it should be understood that they have been presented
by way of example only, and not limitation. Thus, the breadth
and scope of the present application should not be limited by
any of the implementations described herein, but should be
defined only in accordance with the following and later-sub-
mitted claims and their equivalents.

US 9,075,766 B2

53

What is claimed is:

1. A computer implemented method for determining
whether to continue a relationship in an online social net-
work, the method comprising:

maintaining, at a server, data entries in one or more data-

base tables, the data entries including:

an identification of an entity,

an identification of a user having a social networking
relationship with the entity, and

an affinity score indicating an amount of interaction by
the user with the entity;

adjusting the affinity score by an inflation factor to deter-

mine a normalized affinity score;

determining a ratio of the normalized affinity score to a

measure of an amount of content associated with the
entity and published in a feed accessible by the user;
comparing the ratio with a threshold;

determining that the ratio meets or traverses the threshold;

and

identifying, when the ratio meets or traverses the threshold,

the social networking relationship between the user and
the entity as a candidate for being discontinued.

2. The method of claim 1, wherein the content is published
by or on behalf of the entity.

3. The method of claim 1, wherein the content is published
by or on behalf of a further entity having a parent-child or a
child-parent relationship with the entity.

4. The method of claim 1, further comprising:

generating a first communication including a recommen-

dation to discontinue the social networking relationship
between the user and the entity; and

providing the first communication to a computing device

associated with the user.

5. The method of claim 4, further comprising:

receiving a second communication from the computing

device associated with the user, the second communica-
tion including a confirmation of the recommendation;
and

discontinuing or suspending, when the second communi-

cation includes the confirmation, the social networking
relationship between the user and the entity.
6. The method of claim 4, further comprising:
receiving a second communication from the computing
device associated with the user, the second communica-
tion including a denial of the recommendation; and

increasing, when the second communication includes the
denial, the affinity score by a margin.

7. The method of claim 1, further comprising:

discontinuing or suspending the social networking rela-

tionship between the user and the entity.

8. The method of claim 1, wherein the feed accessible by
the user is one of: a profile feed of the user, a news feed of the
user, a group feed, and a record feed.

9. The method of claim 1, wherein the inflation factor has
a value based on a measure of time.

10. The method of claim 9, wherein the inflation factor is an
exponential function of a measure of time.

11. The method of claim 1, wherein the threshold is
adjusted in accordance with the inflation factor.

12. The method of claim 1, wherein the measure of the
amount of content is adjusted in accordance with the inflation
factor.

13. The method of claim 1, wherein the social networking
relationship is one of: a following relationship, a friending
relationship, a liking relationship, a commenting relation-
ship, a membership in a group, and a membership in a com-
munity.

10

15

20

25

30

35

40

50

55

60

54

14. The method of claim 1, wherein the measure of the
amount of content includes a number of feed items published
during a timeframe, the feed items including one or more of:
record updates, posts, comments, likes, and requests for fur-
ther content.

15. The method of claim 1, wherein maintaining the affin-
ity score includes: updating the affinity score to count point
values of interactions by the user with the entity.

16. The method of claim 15, wherein different types of
interactions have different corresponding point values.

17. The method of claim 16, wherein the interactions are
with one or more feed items associated with the entity and
include one or more of: likes, comments, and requests for
further content.

18. The method of claim 16, further comprising: applying
the inflation factor to the counted point values of user inter-
actions before updating the affinity score.

19. The method of claim 18, wherein the inflation factor
has a first value when applied to a counted point value of a
user interaction and has a second value when the affinity score
is adjusted by the inflation factor, the second value being
different from the first value.

20. A computer implemented method for determining
whether to continue a relationship in an online social net-
work, the method comprising:

maintaining, at a server, data entries in one or more data-

base tables, the data entries including:

an identification of an entity,

an identification of a user having a social networking
relationship with the entity, and

an affinity score indicating an amount of interaction by
the user with the entity;

determining a ratio of the affinity score to a measure of an

amount of content associated with the entity and pub-
lished in a feed accessible by the user;

comparing the ratio with a threshold;

determining that the ratio meets or traverses the threshold;

and

identifying, when the ratio meets or traverses the threshold,

the user and the entity as candidates for discontinuing
the social networking relationship therebetween.

21. A computer implemented method for determining
whether to continue relationships in an online social network,
the method comprising:

maintaining, at a server, a plurality of unique data entries in

one or more database tables, each data entry including:

an identification of one of a plurality of entities,

an identification of one of a plurality of users having a
social networking relationship with the one entity, and

an affinity score indicating an amount of interaction by
the one user with the one entity;

for each data entry, determining a ratio of the affinity score

to a measure of an amount of content associated with the
identified entity and published in a feed accessible by the
identified user;

ranking the ratios in numerical order;

selecting one or more of the data entries corresponding to

one or more of the ranked ratios according to a position
of the one or more ranked ratios in the numerical order;
and

identifying the user and the entity of the selected one or

more data entries as candidates for discontinuing the
social networking relationship therebetween.

22. The method of claim 21, wherein the position is the
lowest in the numerical order.

US 9,075,766 B2

55

23. The method of claim 22, further comprising:

determining that the ratio or ratios of the selected one or

more data entries meets or traverses a threshold.

24. One or more computing devices for determining
whether to continue a relationship in an online social net-
work, the one or more computing devices comprising:

one or more processors operable to execute one or more

instructions configured to cause a computing device to:
access data entries maintained in one or more database
tables, the data entries including:
an identification of an entity,
an identification of a user having a social networking
relationship with the entity, and
an affinity score indicating an amount of interaction
by the user with the entity;
adjust the affinity score by an inflation factor to deter-
mine a normalized affinity score;
determine a ratio of the normalized affinity score to a
measure of an amount of content associated with the
entity and published in a feed accessible by the user;
compare the ratio with a threshold;
determine that the ratio meets or traverses the threshold;
and
identify, when the ratio meets or traverses the threshold,
the social networking relationship between the user
and the entity as a candidate for being discontinued.

10

15

20

56

25. A non-transitory computer-readable storage medium
storing instructions configured to be executed by one or more
processors to cause a method to be performed for determining
whether to continue a relationship in an online social net-
work, the method comprising:

accessing one or more data entries in one or more database

tables, the data entries including:

an identification of an entity,

an identification of a user having a social networking
relationship with the entity, and

an affinity score indicating an amount of interaction by
the user with the entity;

adjusting the affinity score by an inflation factor to deter-

mine a normalized affinity score;

determining a ratio of the normalized affinity score to a

measure of an amount of content associated with the
entity and published in a feed accessible by the user;
comparing the ratio with a threshold;

determining that the ratio meets or traverses the threshold;

and

identifying, when the ratio meets or traverses the threshold,

the social networking relationship between the user and
the entity as a candidate for being discontinued.

#* #* #* #* #*

